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ABSTRACT
Kinematic models of simulating earthquake radiation in seismic hazard analysis typically
require prescribing the distribution of final slip over the hypothetical fault planes. The spa-
tial spectra of heterogeneous slip affect the frequency spectra of the seismic body waves.
The representation integral of elasticity provides a convenient analytical tool by which the
relationships between the slip spectra in the wavenumber domain and the wave spectra in
the frequency domain can be scrutinized. In the limit of the waves from a small source in
the far field, the Fourier spectrum of wave displacement is the spectrum of the slip-rate
function multiplied by the spatial slip spectrum representing fault directivity. A popular
model for the latter is the k-square slip distribution. Classic results prescribe that for a
typical ω-square source time function, such multiplication, conversely to a common
assumption that the k-square slip distribution always leads to the ω-square decay of
the high-frequency seismic spectra, can result in the ω−4 power-law decay. Such steep
fall-off rates are highly unusual in observations, suggesting that the k-square hetero-
geneous slip in certain cases may significantly underpredict the realistic high-frequency
ground motions, including peak velocities and accelerations. An alternative use of hetero-
geneous slip distributionswould be to explain the additional high-frequency diminution of
the observed spectra that is usually attributed to ad hoc cutoff (“fmax” or “kappa”) filters.
The simple asymptotic relationships between heterogeneous fault slip and body wave
spectra may not hold true in the vicinity of large earthquakes, at distances of main interest
to hazard calculations.

KEY POINTS
• How does the variable slip distribution on rupturing faults

affect the spectra of radiated body waves?
• The frequency spectrum of waves is the spectrum of slip-

rate function multiplied by the spatial slip spectrum.
• The commonly assumed k−2 slip distribution may signifi-

cantly underpredict the realistic ground motions.

INTRODUCTION
Prescribing fault-slip distributions for the kinematic models
of earthquake radiation is an important component of modern
seismic hazard assessment (Somerville et al., 1999; Mai and
Beroza, 2002; Graves and Pitarka, 2010, 2016; Schmedes et al.,
2013; Infantino et al., 2020; Rodgers et al., 2020;
Razafindrakoto et al., 2021). In assessing the impact of various
slip distributions on the resulting ground motions, it is useful
to acquire general understanding of the relationships between
the spatial characteristics of slip and the frequency spectra of
radiation. Developing such an understanding is not new; how-
ever, there is still a practical need in general relationships high-
lighting the main controls exerted by the spatial spectra of slip

on the radiated waves. In our view, misconceptions exist that
could be readily revealed and corrected by such relationships.

A convenient and accurate tool that can be used for this
purpose is the representation integral of elasticity, which pre-
scribes the exact wavefield emitted by a displacement disconti-
nuity across a fault plane in a homogeneous elastic space. The
full form of the integral can be used for the near field, as well as
its asymptotic forms for small sources and large distances.
Summarizing specific inferences from such an analysis has
both instructional and practical value.

In the following, to better tease out the effects of variable
slip on seismic radiation, we will assume the velocity of rupture
propagation to be constant. The phenomena arising from var-
iable rupture speed have been addressed in two separate
articles (Beresnev, 2021; Beresnev and Roxby, 2021). The con-
clusions have been twofold. First, variable speed does not
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necessarily lead to the enhancement in high-frequency
radiation. Radiation from orderly (nonrandomized) changes
in the velocity is fully controlled by the interference effects
and can be above or below the levels produced by constant
rupture speed. Randomizing the velocity destroys the patterns
of regular interference and eliminates the artifacts of sup-
pressing the high-frequency levels by destructive interference.
Randomization does not in itself enhance the high-frequency
levels; if it does, this is through the elimination of artifacts.
Hisada (2000) shows similar patterns; the more regular the
rupture time becomes, the faster the high-frequency slope of
radiated spectra decays (compare fig. 4 of Beresnev and
Roxby, 2021 for a finite-fault rupture or fig. 2 of Beresnev,
2019b for a line source with fig. 6a,b of Hisada, 2000).
Second, randomization substantially reduces the difference
between the forward and reverse directivity pulses.

FULL SPECTRUM OF FAULT RADIATION
Aki and Richards (1980, their equation 14.37) and Beresnev
(2017b, his equation 1) provide the full form of the represen-
tation integral. Assume a source time (slip) function in the
form of a radially propagating rupture,

EQ-TARGET;temp:intralink-;df1;53;458Δu�ξ; t� � U�ξ�Δus�ξ; t − r=v�; �1�

in which U�ξ� is the distribution of final-slip values over the
fault plane, Δus�ξ; t� is a dimensionless shape function,
r � jξ − ξ0j, ξ0 is the hypocenter location, and v is the rupture
propagation speed, which can be a function of ξ. Then, the
application of the Fourier transform to the integral leads to
the radiated frequency spectrum of the displacement compo-
nent ui�x; t� of the wavefield at the observation point x
(Beresnev, 2017a, his equation 4):
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Here,Δus�ω� is the Fourier transform ofΔus�t�, in which we
have assumed that the temporal function Δus�t� does not
depend on the position on the fault plane, allowing us to factor
Δus�ω� out of the integral. In addition, n is the unit vector in the
direction of slip, ν is the unit normal to the fault, R � jx − ξj,

γ � �x − ξ�=R, α and β are the P- and S-wave propagation
speeds, and μ and ρ are the shear modulus and density of
the medium, respectively. The integration in equation (2) is over
the fault plane. The function t1�ω� in the integrand is
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Equation (2) shows that the spectrum of the seismic field is
that of the source time function Δus�ω� modified by the inte-
gral I�x;ω� over the fault representing the fault’s directivity
pattern,

EQ-TARGET;temp:intralink-;df4;320;575u�x;ω� � Δus�ω�I�x;ω�: �4�

We can refer to I�x;ω� as the directivity spectrum. In gen-
eral case, it is a function of complicated form. The presence of
I�x;ω� as the surface integral in equation (2) is purely due to
the fault finiteness and the resulting interference effects specific
to fault geometry. When the source dimensions shrink to a
point, all distance-dependent factors are taken out of the inte-
gral, and ui�x;ω� converges to the classic expression for the
radiation from a point shear dislocation (Aki and Richards,
1980, their equation 4.32).

It should be remembered that, in the case of fault-position-
dependent temporal functionΔus�ξ; t�, it will not be possible to
factor its spectrum out of the integral in equation (2), and the
spectrum Δus�ξ;ω� will appear as a multiplier of U�ξ� in front
of the brackets in the integrand.

SPECTRUM FROM A SMALL SOURCE IN THE FAR
FIELD
Equation (2) significantly simplifies and acquires transparent
meaning in the limiting case of a small source radiating into the
far field. For the general case of fault-position-dependent
Δu�ξ; t�, the respective asymptotic form of equation (2) for
shear-wave radiation is given by equation (14.14) of Aki
and Richards (1980):

EQ-TARGET;temp:intralink-;df5;320;236

ui�x;ω� � −μ
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eiω
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×
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in which r0 is the distance to the receiver from the origin (Aki
and Richards, 1980, their fig. 14.1), and Δu

̣ �ξ;ω� is the Fourier
spectrum of the time derivative of Δu�ξ; t� (the slip velocity)
(the dot product is intended in the power of the exponent). The
constant vector k is given by:

EQ-TARGET;temp:intralink-;df6;320;92k � �ω=β�γ; �6�
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in which γ is the unit vector pointing from the origin to the
receiver. Aki and Richards (1980) omit the dimensional coef-
ficient in front of the integral in equation (5), which we have
retained for completeness. Equation (5) is valid for any general
functional form Δu�ξ; t� without restricting the rupture to
propagate along the fault plane according to the delayed
argument in equation (1). It should also be clarified that equa-
tion (2) was derived following the traditional sign convention
in the Fourier transform on a function of time, in which the
sign of the power of the exponent is negative, for example,
f �ω� � R

∞
−∞ f �t� exp�−iωt�dt (Båth, 1974, his section 2.2.2,

his equation 20). However, all equations related to the far-field
asymptotics of spectra of Aki and Richards (1980), which we
are referring to, use the convention in which the sign is positive
(Aki and Richards, 1980, p. 87). The moduli of the spectra, for
example, those that will be plotted subsequently, are not
affected by this difference.

For the fault-position-independent Δus�t�, the slip-rate
spectrum Δu

̣
s�ω� is taken out of the integral, transforming

equation (5) into

EQ-TARGET;temp:intralink-;df7;41;484ui�x;ω� � constΔu
̣
s�ω�

ZZ
U�ξ�e−i�k·ξ�dΣ; �7�

in which the dimensional coefficient in equation (5) has been
designated as a constant. Equation (7) can be rewritten as

EQ-TARGET;temp:intralink-;df8;41;406
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in which we have recognized that the double integral in equa-
tion (7) is the 2D spatial Fourier transform of the distribution
of static slip U�ξ� over the fault plane (the spatial slip spectrum
in the wavenumber domain), taken, as seen from equation (6),
at the specific wavenumbers k1 � �ω=β�γ1 and k2 � �ω=β�γ2
(the spatial transform of U is recognized by its arguments).
The directivity spectrum in equation (4) is thus reduced
to Ii�x;ω� � const�−iω�U�ωγ1=β;ωγ2=β�.

The conclusion drawn from equation (8) is that the Fourier
spectrum of the far-field displacement is the spectrum of the
slip-rate function Δu

̣
s�ω� modulated by the multiplication by

the spatial slip spectrum representing the fault’s directivity.

SPECTRUM FROM A LINE SOURCE
The result in equation (8) can be further simplified in the
asymptotics of a near-line source, in which one dimension
(e.g., the down-dip widthW of the fault) is significantly shorter
than the other (e.g., the length L along strike). The respective
result for a rupture with constant static slip moving with con-
stant speed is contained in equation (14.18) of Aki and
Richards (1980). We generalize it by allowing the static slip
to vary as U�ξ�, according to equation (1), while keeping

Δus�t� as fault-position independent as in the approximation
equation (14.18). The beginning of equation (14.18) is then
rewritten as

EQ-TARGET;temp:intralink-;df9;308;705
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in which ξ1 is the distance along the length of the fault, andΨ is
the angle between the direction to the receiver and the ξ1 axis.
The dimensional constant, omitted by Aki and Richards
(1980), has again been restored for completeness; it is the same
as in equation (7). We have again recognized that the integral
in equation (9) is the 1D spatial Fourier transform of U�ξ1�
taken at the wavenumber ω�cosΨ=β − 1=v�.

The result in equation (9) is equivalent to equation (8) for
the case of a line fault and a rupture moving with constant
speed. The conclusion we draw remains the same: the
Fourier spectrum of the far-field displacement is the spectrum
of the slip-rate function modified by the slip spectrum.

SPECTRUM FROM A LINE SOURCE VERSUS
EQUIVALENT RESULT OF HERRERO AND BERNARD
The displacement spectrum in equation (9) can be directly con-
trasted with the often cited equivalent result of Herrero and
Bernard (1994). For the same line source approximation, their
equation (24) (also reproduced in their Abstract) expresses the
far-field frequency spectrum for the fault slip that instantaneously
reaches its full value as (our notation is kept for the spectra):

EQ-TARGET;temp:intralink-;df10;308;353ui�x;ω� � FU

�
k1 �

1
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ω

v

�
; �10�

in which F is a dimensional coefficient not specified by Herrero
and Bernard (1994). Considering that Cd � 1=�1 − �v=β� cosΨ�,
equation (10) is recast as

EQ-TARGET;temp:intralink-;df11;308;261ui�x;ω� � FU
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�
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v
−
cosΨ
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��
: �11�

Comparing with equation (9), one can see that the result of
equation (11) in Herrero and Bernard (1994) is incomplete for
any realistic fault slip. It is only true for the limiting case in
which the slip velocity is the delta function having the unit
spectrum. This is never the case. For all practically relevant
situations, to obtain the frequency spectrum of the far-field
seismic wave, the wavenumber spectrum of slip must be multi-
plied by the frequency spectrum of the slip-rate function; how-
ever, the latter is missing from equation (11). Because such
functions typically represent low-pass filters, the multiplication
will generally increase the high-frequency slope of the Fourier
spectrum of radiation.
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MODIFICATION OF THE SPECTRUM OF SOURCE
TIME FUNCTION BY SLIP HETEROGENEITY
For a point source, the amplitude spectrum of the far-field
displacement is the same as that of the slip-rate function:

EQ-TARGET;temp:intralink-;df12;53;692jui�x;ω�j �
hRθφiμWLU

4πρβ3r0
jΔụ s�ω�j; �12�

in which r0 is the distance from the source, U is the average
slip, and hRθφi is the point-source shear-wave angular
radiation pattern (Aki and Richards, 1980, their equations
4.32–4.33; Beresnev and Atkinson, 1997, their equation 11).

For a finite source, the slip-rate spectrum is modified by the
directivity according to equation (4). We will consider the line
source example to illustrate such modification, in which case
the resulting frequency spectrum of the seismic wave is given
by equation (9). A popular model for the wavenumber spec-
trum U�k1; k2� is the “k−2” (“k-square”) slip distribution, intro-
duced by Herrero and Bernard (1994). This model has often
been used in the synthetic rupture-slip generators for seismic
hazard computations (Somerville et al., 1999, pp. 75–76;
Graves et al., 2008; Graves and Pitarka, 2010, p. 2096, 2016;
Schmedes et al., 2013, p. 1121; Rodgers et al., 2019;
Infantino et al., 2020, pp. 2563–2564; Rodgers et al., 2020,
p. 2866; Razafindrakoto et al., 2021). For the line source
(k2 � 0), it takes the following form:

EQ-TARGET;temp:intralink-;df13;53;406jU�k1�j �
�
C Δσ

μ
1
k21
; k1 ≥

1
L

UL; k1 < 1
L

; �13�

in which Δσ is the mean stress drop, and C is an unspecified
geometrical factor (C ≈ 1) (Herrero and Bernard, 1994, their
equation 6 for k1 ≥ 1=L and equation 1 for k1 < 1=L). The
low-frequency limit UL has been obtained as U�k1 � 0� �R
L
0 U�ξ1�dξ1 � UL. In modifying equation (13) relative to
equation (6) of Herrero and Bernard (1994), the fact has been
taken into account that the dimension of the spatial spectrum
for the line source, relative to that for a 2D fault plane, is
reduced from two to one.

Substitution k1 � ω�cosΨ=β − 1=v� is then made in equa-
tion (13), according to equation (9). We note that the resulting
conditions k1 ≥ 1=L or k1 < 1=L in equation (13) cease to
make strict sense, because k1 in the substitution can be nega-
tive, which reveals a somewhat artificial character of the k-
square spatial spectrum. To circumvent this difficulty in plot-
ting the resulting frequency spectra, albeit arbitrarily to some
degree, the condition can be rewritten for the modulus of k1,
introducing the frequency f 0 � j2πL�cosΨ=β − 1=v�j−1. The
two frequency ranges, corresponding to the two wavenumber
ranges in equation (13), will then be f ≥ f 0 and f < f 0.

For the slip-rate spectrum Δu
̣
s�ω� in equation (9), we can

choose the often used ω-square shape. The amplitude fre-
quency spectrum of the seismic wave, caused by the k-square

slip distribution on a line source with the ω-square source time
function then becomes, from equation (9),

EQ-TARGET;temp:intralink-;df14;320;718ju2�x;ω�j �
� μ

4πρβ3r0
WC Δσ

μ
1

1�� ωωc�
2

1
ω2�cosΨβ −1v�2 ; f ≥ f 0

μ
4πρβ3r0

WLU 1
1�� ωωc�

2 f < f 0
; �14�

in which the explicit value of the quantity jconstj � μ
4πρβ3r0

for
Ψ � 0 (radiation along the direction of rupture propagation)
for the fault-normal component (i = 2) and the geometry of a
vertical right-lateral strike-slip fault (Beresnev, 2021, his equa-
tion 7) has been substituted, and ωc is the corner frequency of
the ω-square spectrum of the slip function.

For comparison, we can also take the case in which the slip
is constant across the entire fault plane. The spatial spectrum in
equation (9) then reduces to the sinc function (Aki and
Richards, 1980, their equation 14.18). The resulting equation
for radiation, equivalent to equation (14), is

EQ-TARGET;temp:intralink-;df15;320;515ju2�x;ω�j �
μ

4πρβ3r0
WLU

1
1� �ωωc

�2
���� sinXX

����; �15�

in which X � �ωL=2��1=v − �cosΨ�=β�.
To produce a numerical example of how the original

ω-square slip spectrum is modified by the fault directivity
resulting from both the k-square and constant slip distribu-
tions, we take the following values of the parameters:
β � 5000=

���
3

p
m=s, ρ � 2700 kg=m3, v � 0:8β, and Ψ � 0.

The parameters C = 1, Δσ � 4 MPa, and
μ � 3:3 × 1010 N=m2 have been borrowed from figure 1 of
Herrero and Bernard (1994).

The examples are produced for the characteristic fault
dimensions L = 3400 and 10,000 m, corresponding approxi-
mately to Mw 5 and 6 earthquakes according to the empirical
relationship between the rupture area and the moment magni-
tude of Wells and Coppersmith (1994, their table 2A). To com-
ply with the condition for the near-line-source approximation
(W ≪ L), the width W is set to 100 m. The respective average
offsets U = 0.14 and 0.49 m are calculated as U � M0=�μA�, in
which the seismic moment M0 is obtained from the moment
magnitude and the fault area A from the equation of Wells
and Coppersmith (1994). The frequencies f 0 in the examples
are 0.54 and 0.18 Hz for the Mw 5 and 6 events, respectively.

The corner frequency of the ω-square slip for theMw 5 event
was set to a typical value of f c � 1 Hz. This frequency is
reduced to the value of 0.30 Hz forMw 6 in the same proportion
as the offsets U used for the two magnitudes, according to equa-
tion (18) for the corner frequency discussed subsequently.

The most restrictive of the conditions on the distance to the
observation point leading to the small-source approximation
in equations (8) and (9) is

EQ-TARGET;temp:intralink-;df16;320;85r0 ≫
2L2

λ
; �16�

1466 • Bulletin of the Seismological Society of America www.bssaonline.org Volume 112 Number 3 June 2022

Downloaded from http://pubs.geoscienceworld.org/ssa/bssa/article-pdf/112/3/1463/5609471/bssa-2021235.1.pdf
by Iowa State University, 13924 
on 11 June 2022



in which λ is the wavelength (Aki and Richards, 1980, their
equation 14.12). Using L = 3400 m and λ � β=50 m (at the
frequency of 50 Hz), we obtain the limits of applicability of
equation (9) as r0 ≫ 400 km. Accordingly, r0 will be set to
1000 km. As seen from equations (12), (14), and (15), its spe-
cific value does not carry particular significance and merely
serves as a scaling factor. This distance is unchanged for the
Mw 6 example.

The light gray lines in Figure 1a,b represent the Fourier
amplitude spectra of shear-wave radiation from the original
point-source ω-square shear dislocation, calculated from equa-
tion (12), in which jΔụ s�ω�j � 1=�1� �ω=ωc�2�. The quantity
hRθφi is equal to unity in the direction parallel to the slip vector,
as in the example. The dark gray lines are the spectra emitted
by the line source with the same ω-square source time func-
tion, which is modified by the directivity taken for the constant
offset across the fault, computed from equation (15). Finally,
the black lines are the same line source spectra radiated by the
k-square slip distribution (equation 14). The k−2 source radi-
ation has the steepest rate of high-frequency decay, propor-
tional to ω−4, as seen from equation (14). It thus can create
a significant deficit in the simulated high-frequency energy.
Alternatively, an appropriately chosen heterogeneous slip dis-
tribution can explain the much steeper frequency decay of
observed spectra than one obtained from point-source model-
ing. Ad hoc high-cut filtering is required to account for the
additional diminution of spectra, termed “fmax” or “kappa” fil-
tering, which typically is attributed to local site effects (Boore,
2003, his equations 19 and 20). The same diminution can be
explained by pure source effect, owing to the fault finiteness.

It is often argued that the k−2 slip distribution results in the
ω−2 spectral shape of the shear-wave radiation (e.g., Somerville
et al., 1999, p. 76; Mai and Beroza, 2002, p. 10–1). This result is
typically attributed to the formulation by Herrero and Bernard
(1994), in which it can be traced to their equation (24), and the
text under it (pp. 1223–1224) that states that “a power-law
decay (in wavenumber) for the slip spectrum produces the
same power-law decay (in frequency) for the body wave

radiation.” However, as indicated earlier, equation (24) in
Herrero and Bernard (1994) is only valid for the hypothetical
situation of instantaneous slip on the entire fault and is thus
incomplete. The slip spectrum must be multiplied by the
frequency spectrum Δu

̣
s�ω� of the slip-rate function to obtain

the frequency spectrum of the body wave (equation 9).
Equation (9) immediately follows from the classic relationships
for the far-field radiation from a small earthquake source. It
should be noted that Ruiz et al. (2011, their equation 6) do
later provide the correct general form of the equation.

SPECTRUM FROM A LINE SOURCE WITH FAULT-
POSITION-DEPENDENT SOURCE TIME FUNCTION
A more general form of the slip-rate function is Δu

̣ �ξ1; t� �
U�ξ1�Δu

̣
s�ξ1; t�, in which the shape factor Δu

̣
s�ξ1; t� varies

across the fault. This would be the case, for example, for the slip
that produces exactly the ω-square radiated spectrum,

EQ-TARGET;temp:intralink-;df17;308;236Δu
̣
s�ξ1; t� �

t
τ2

e−t=τ ; �17�

EQ-TARGET;temp:intralink-;df18;308;184τ � U�ξ1�
evmax�ξ1�

; �18�

in which vmax is the maximum velocity at which the fault at a
point slips, and ωc ≡ 1=τ (Beresnev and Atkinson, 1997, their
equation 8; Beresnev, 2001, his equation 3). Although we pre-
viously set the corner frequency to a constant value, generally it
will be dependent on the local offset and the peak slip rate
according to equation (18). The value of τ sets the slip rise time.

Figure 1. Amplitude spectra of shear-wave radiation from a point shear
dislocation, line source with the constant slip, and line source with the
k-square slip. All are for the fault-position-independent slip-rate function
Δu

̣
s�t�. The values of the high-frequency slopes are −2, −3, and −4.

(a) Mw 5 and (b) Mw 6.
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The generalized equivalent of equation (9) then becomes

EQ-TARGET;temp:intralink-;df19;53;496
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��
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�
ω

�
cosΨ
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−
1
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��
; �19�

in which F�ξ1;ω� ≡ U�ξ1�Δu
̣
s�ξ1;ω�, and F�ω�cosΨ=β − 1=v��

is the spatial spectrum of F�ξ1;ω� taken at the wavenumber
ω�cosΨ=β − 1=v�. Unlike equation (9), the spatial spectrum
now is calculated not for the slip U�ξ1� but for the product
U�ξ1�Δu

̣
s�ξ1;ω�. The complex Fourier spectrum of equa-

tion (17) is

EQ-TARGET;temp:intralink-;df20;53;341Δu
̣
s�ξ1;ω� � 1=�1� iωτ�2: �20�

Given equation (18), the spatial spectrum in equation (19)
should therefore be calculated for the product U�ξ1�=
f1� iωU�ξ1�=�evmax�ξ1��g2. If U�ξ1� has a complex k-square
wavenumber spectrum, the spatial spectrum of the product will
be the convolution of this k-square spectrum and the wave-
number spectrum of f1� iωU�ξ1�=�evmax�ξ1��g−2, in which
the functions U�ξ1� and vmax�ξ1�must be specified. The simple
spectral transformations exemplified in Figure 1 will no
longer apply.

An example is provided in Figures 2 and 3, for the same
fault and observation point geometry as in the example of
Figure 1a. The function U�ξ1� was generated as follows.
The discrete k-square amplitude spectrum was first obtained
in the same manner as for Figure 1, for the spatial sampling
interval of Δξ1 � 10 m, through

EQ-TARGET;temp:intralink-;df21;53;108jU�k1�j �
( μ

4πρβ3r0
WC Δσ

μ
1
k21
; k1 ≥

1
L

μ
4πρβ3r0

WLU ; k1 < 1
L

: �21�

The phase was randomly drawn from the uniform distribu-
tion between −π and π, as in Graves and Pitarka (2010, their
equation A3). The resulting complex spectrum was inverted to
produce U�ξ1�, whose real part was taken. If the minimum of
the resulting slip distribution was less than zero, it was sub-
tracted to eliminate negative slip, in which case the minimum
value became zero. Next, the function U�ξ1� was renormalized
by multiplying it by U=Ū�ξ1�, in which Ū�ξ1� is the average, to
offset the scaling introduced by the discrete inverse Fourier
transform and ensure the correct value of the average slip
U = 0.14 m for the target earthquake.

The function vmax�ξ1� was generated by adding a normally
distributed random number with zero mean and standard
deviation of 0.3 m/s to the value of vmax � 1 m=s. The velocity
was constrained to equal 0.05 and 3 m/s if it accidentally fell
below zero or above 3 m/s, respectively. The resulting spatial
distribution of vmax was smoothed by a five-point running
average, to obtain the overall range of change in vmax from
approximately 0.7–1.4 m/s.

The wavenumber spectrum of the product U�ξ1�=
f1� iωU�ξ1�=�evmax�ξ1��g2 was then computed for the
frequencies between zero and 50 Hz with a step of 0.5 Hz
and interpolated as a function of k1 at each frequency. The
value of the interpolated function was then taken at
k1 � ω�cosΨ=β − 1=v� and plotted as a function of frequency,
yielding the amplitude spectrum of the radiated shear wave.

Figure 2 presents the resulting distributions U�ξ1� along the
fault for the cases when the minimum slip is zero and nonzero,
as indicated by the labels. For comparison, the third scenario
is added, in which the function τ in equation (18) was set
to a constant average value, by assuming U = 0.14 m and
vmax � 1 m=s. The corner frequency in this case is constant

Figure 2. Distributions of slip along the fault line in three different cases used
in the calculations through the generalized equation (19). Figure 3. Amplitude spectra of shear-wave radiation from the line source

with the slip distributions corresponding to Figure 2. The values of the
high-frequency slopes are approximately −1.5, −2.6, and −4. The units on
the vertical axis are arbitrary.

1468 • Bulletin of the Seismological Society of America www.bssaonline.org Volume 112 Number 3 June 2022

Downloaded from http://pubs.geoscienceworld.org/ssa/bssa/article-pdf/112/3/1463/5609471/bssa-2021235.1.pdf
by Iowa State University, 13924 
on 11 June 2022



and equal to f c � evmax=�2πU� � 3:1 Hz. The third scenario
hence is the one of the fault-position-independent shape func-
tion, described by equation (14) and represented by the black
line in Figure 1a.

Figure 3 shows the resulting frequency spectra of radiation
(the color coding of the scenarios corresponds to Fig. 2).
Straight lines have been visually fitted to the high-frequency
slopes; the frequency fall offs are ω−1:5, ω−2:6, and ω−4 for
the cases of zero minimum slip (light gray line), nonzero
one (dark gray line), and constant corner frequency (black
line). Because of renormalization, the spectral units have
switched to arbitrary. As seen, when the shape function
Δu

̣
s�t� is independent of the position on the fault (the case

of constant τ), the spectrum reduces to the form of equa-
tion (14); the slope (power of ω) of −4 is thus expected (black
line), as for the black lines in Figure 1 as well. The general case
is however different and can be understood on physical
grounds. In the product F�ξ1;ω� in equation (19), the fre-
quency spectrum Δu

̣
s�ξ1;ω� has a variable corner frequency

depending on ξ1, controlled by equation (18) (the corner fre-
quency is the inverse of τ). The slope of −2 in this spectrum is
only present at frequencies above f c. In the scenario of zero
minimum slip, parts of the fault in which U�ξ1� is near zero
radiate spectra with very large, nearly infinite corner fre-
quency; in the seismic frequency range of Figure 3, these spec-
tra are flat and contribute no additional slope, which causes the
significant overall reduction of the frequency rolloff in the
cumulative spectrum radiated by the entire fault (the light gray
line in Fig. 3). On the other hand, there are no extremely high
corner frequencies in the scenario of nonzero minimum slip;
all parts of the fault contribute to the high-frequency decay,
commensurate with their corner frequencies, and the fall-off
rate expectedly becomes greater (the dark gray line in Fig. 3).
The greatest negative slope for the k-square slip distribution
is –4, which is achieved for the fault-position-independent
temporal slip-rate function Δu

̣
s�t�.

A way to universally preserve the fall-off rates of ω−2 in the
radiated spectrum in case of the variable slip-rate function,
even if the latter executes its own low-pass filtering, was pro-
posed by Bernard et al. (1996) and further investigated by
Gallovič and Brokešová (2004). Such a preservation is achieved
through an a priori postulation of an ad hoc inverse depend-
ence of the rise time τ on the wavenumber in the large wave-
number range: τ � b=k1, in which b is a constant (Bernard
et al., 1996, their equation 13; Gallovič and Brokešová,
2004, their equation 5). Then the mechanism of retaining
the slope of −2 is as follows. For U�ξ1� having a k-square spec-
trum (e.g., as in equation 21 or as used by Gallovič and
Brokešová, 2004, their equation 6, as well as their equation
9 for the line source), substitution of k1 � ω�cosΨ=β − 1=v�
into it already provides an ω−2 term in the resulting radiation
(e.g., as in equation 14). By the postulated assumption, if
the spatially variable slip shape is a function of ωτ, as in

equation (20), substitution of k1 � ω�cosΨ=β − 1=v� into
ωτ � ωb=k1 makes the frequency ω cancel and the resulting
spatial spectrum Δu

̣
s�ω�cosΨ=β − 1=v�� frequency indepen-

dent. If one could factorize F�ω�cosΨ=β − 1=v�� as
U �ω�cosΨ=β − 1=v��Δụ s�ω�cosΨ=β − 1=v��, that is, represent
the Fourier transform of a product as the product of
the Fourier transforms of the multipliers, then the only
remaining dependence on frequency would come from
U �ω�cosΨ=β − 1=v��, that is, would have the ω−2 shape.

Following this argument, any spatially variable temporal
slip shape that is a function of ωτ would always radiate the
omega-square seismic spectrum. For example, the ramp func-
tion (the boxcar if expressed as slip velocity) falls in the same
category (e.g., Aki and Richards, 1980, their equation 14.20), as
used in the example of Bernard et al. (1996, their equations 10
and 17).

There are two issues with the proposed model. First, the
assumed inverse dependence of the rise time on wavenumber
does not have a reliable physical basis. Bernard et al. (1996,
p. 1158) cautiously admit themselves that their hypothesis
is “clearly speculative.” Following the idea of decomposition
of a function into the sinusoidal Fourier components
(a Fourier series or Fourier transform), a function in space
at any given point will generally simultaneously have contri-
butions from many different harmonics, with both low and
high values of k1. Ambiguity in what harmonic to choose as
the value of k1 in assigning the rise time according to
τ � b=k1 is clearly present.

Second, the Fourier transform of a product cannot be factor-
ized into the product of two transforms (such an assumption is
made by Gallovič and Brokešová, 2004, p. 212; it is also seen in
equation 10 of Bernard et al., 1996, developed for the boxcar
slip-velocity function). Instead, as pointed out earlier, according
to the convolution theorem (e.g., Båth, 1974, his section 3.2.2),
the Fourier transform of a product is the convolution of the two
transforms. For these reasons, the preservation of the omega-
square spectrum of radiation by the assumption of the scale-
dependent rise time is not a viable alternative.

CONCLUSIONS
Contrary to what is often assumed, the k-square slip distribution
on fault ruptures produces the frequency spectra of body wave
radiation that can have the fall-off rates as high as ω−4. In the
general case of the source time function that is dependent on the
position on the fault, the rates can be highly variable in the
approximate range of −1.5 and −4, depending on the specific
k-square slip. The typical high-frequency decay rates in the
observed seismic spectra are between one and three. The
power-law rate of four is highly unusual, casting doubt on
the suitability of certain k-square slip models as a prototype rup-
ture scenario in earthquake hazard calculations, unless the
appropriate heterogeneous slip distributions serve to supersede
the ad hoc “fmax” or “kappa” high-cut filters as the source effect.

Volume 112 Number 3 June 2022 www.bssaonline.org Bulletin of the Seismological Society of America • 1469

Downloaded from http://pubs.geoscienceworld.org/ssa/bssa/article-pdf/112/3/1463/5609471/bssa-2021235.1.pdf
by Iowa State University, 13924 
on 11 June 2022



The spectrum of the source time function Δus�ω� is
expected to exert primary control over the levels of high-fre-
quency radiation from earthquakes (e.g., equations 4, 8, and 9),
whereas the effects of random heterogeneity of fault’s static slip
are less significant (Beresnev, 2017a). For the temporal shape
of slip in the form of the general ω−n dislocation, the quantity τ
(and thus ωc) set the dislocation rise time. The high-frequency
amplitudes are controlled by ωn�1

c and hence by the quantity
vn�1
max (e.g., through equation 18 for n = 2) (Beresnev, 2019a, his
equations 5, 6, and 8). The variability in vmax should thus be
given careful consideration in the hazard models. The fact that
the corner frequencies and the associated rise times should be
chosen judiciously for the correct simulation of high-frequency
radiation is underscored by Schmedes et al. (2013, p. 1129).

Two factors affecting the high-frequency slopes of seismic
spectra have been examined in this article: the spectrum of the
source time function and the distribution of static slip. As
stated in the Introduction, the rupture speed has been assumed
constant. As pointed out by Hisada (2000), spatial variations
in this speed can introduce further modifications of high-fre-
quency decay rates, although, as closely examined by Beresnev
and Roxby (2021) and showed by Hisada (2000, his fig. 6a,b),
the suppression of high frequencies occurs as an artifact of
regular interference. It follows that a particular slope can be
obtained in an ad hoc manner by constructing a specific timing
of rupture travel. An example was provided by Hisada (2000),
who modeled a line source with the fault-position-independent
shape function Δu

̣
s�t� represented by a combination of equi-

lateral triangles (equations 16–18 in Hisada, 2000). Hisada
(fig. 6a) tested three different rupture time models of variable
degrees of randomness. The radiation was thus governed by
the integral in our equation (9) with the time delay ξ1=v in
the integrand replaced by a spatially variable Δt�ξ1� (equation
23 in Hisada, 2000); this case was also investigated by Beresnev
(2019b, his equation 6) and Beresnev and Roxby (2021, their
equation 6). Out of the three travel time distributions tried by
Hisada, only one possibility combined with the spatial distri-
bution of slip and the triangle-type slip-velocity function to
produce an ω-square radiated spectrum. A different choice
of the travel time function would produce a different decay
of the seismic spectrum.

It should be emphasized that equations (8), (9), (14), and (15),
allowing simple interpretations of the modifications of the fre-
quency spectra of the slip function by fault heterogeneity, are
only valid for the underlying approximation of the body waves
from a small source in the far field (equation 16). Such a limiting
case serves illustrative purposes but is of no significant interest to
earthquake hazard calculations. For the more practically impor-
tant situation of the near field of a large earthquake source, the
modification is described by the fault directivity spectrum I�x;ω�
of complicated form (equations 2–4), even if the temporal shape
Δus�t� of the slip on the fault is assumed to be the same at all
points. Simple conclusions about the effects of heterogeneous

distributions of final fault slip on the resulting seismic spectra
may no longer apply. A conclusion already reached is that purely
random disturbances of slip do not significantly affect the finite-
fault radiation described by the full equation (2) (Beresnev,
2017a). A comprehensive numerical study of the effect of other
shapes of the spatial spectra of slip on finite planes is planned for
the future.
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