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The interaction of two spherical longitudinal waves produced by nonceincident sources with the 
generation of a transverse difference-frequency wave is studied theoretically. The equation of 
motion from five-constant elasticity theory to the second order in the displacement is used as a 
mathematical model. The general solution for the difference-frequency field outside the wave 
interaction region is obtained in the form of a scattering integral. An analytical solution for 
plane intersecting beams is derived as a limit case of small interaction volumes. For the general 
case, the solution is analyzed numerically, and the effect of the sphericity of interacting waves is 
compared with the results of plane-wave resonance interaction. In the limit of large interaction 
volumes, backscattering at the difference frequency is formed. This effect suggests the use of this 
type of nonlinear interaction for remote sensing of the nonlinear properties of the Earth's crust. 

PACS numbers: 43.25.Lj 

INTRODUCTION 

Nonlinear interactions of noncollinear plane wave 
sound beams have been studied theoretically in a number 
of publications. I-3 Selection rules have been established 
that determined the conditions for resonance interactions 

(the so-called "synchronism" conditions), under which di- 
rected beams of sum and difference-frequency waves were 
formed. Synchronism conditions define the relationship be- 
tween frequencies of interacting waves and compressional 
and shear wave velocities for which the resonance interac- 

tion is possible; the angle of a scattered wave can be found 
from these conditions for given frequency and velocity 
ratios. l These selection rules for the scattering of sound by 
sound in solids (combination scattering) have been vali- 
dated experimentally in several works. 4-7 

Recently the use of combination scattering of seismic 
waves to measure the earth's crust nonlinear coefficients 

has been proposed. a The nonlinear coefficient of rock may 
provide important information about its mechanical con- 
ditions, porosity, the presence of microcracks, etefi '9-12 

However, seismic waves excited by point-like surface- 
based sources spread spherically, making the theory of in- 
teracting plane beams of limited applicability to seismol- 
ogy. Spherical spreading also makes interactions 
intrinsically nonresonant. A theory of the interaction of 
spherical longitudinal waves produced by nonceincident 
sources is developed in this paper. 

I. THEORY 

We assume that two point sources O• and O 2 of lon- 
gitudinal elastic waves are located in a homogeneous and 
isotropic elastic solid at some distance from each other. 
They radiate continuous sinusoidal waves with frequencies 

f• and f2, respectively. We also assume that the interac- 
tion of these waves takes place in a limited spatial region 
(Fig. 1 ). Elastic motion of the medium will be described 
by the equations of a five-constant elasticity theoryJ '•3'•4 
For simplicity, the generation of only the difference- 
frequency wave (DFW) will be considered. 

Let us write the equation of motion of a five-constant 
theory to the second order in the displacement: 
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where u? • is the/th component of the displacement in the 
scattered difference-frequency wave, ui is the /th compo- 
nent of the primary waves, K and p are second-order elas- 
tic toodull, and A, B, and C are third-order moduli. 

Following Jones and Kobett's • approach, we will solve 
Eq. (1) using a G-reen's function method for an inhomo- 
geneous wave equation. The right-hand side of Eq. ( 1 ) is a 
known function of primary waves. Using the designations 
of Fig. 1, the primary wave field can be represented as a 
vector sum of spherical longitudinal waves with the 
sources at points O l and 02: 
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FIG. 1. Geometry of the problem. Here, O I and O 2 are sources of primary 
waves, k• and k2 are their wave vectors, M is an observation point, M' is 
a point belonging to the interaction region, O is origin, V is the interaction 
region; R, R•, R2, r, r' are radius vectors. Directions of the axes of a 
Cartesian coordinate system are also shown. 

where R1,2 = [R•.2I, F 0 is the force amplitude produced by 
the sources,/• is the shear modulus, and the subscript i in 
the right-hand side means the projection of a field on the i 
axis. We use in Eq. (2) the expression for the far field of 
piston sources in a solid •5 to make the formulas applicable 
to seismic exploration problems. We assume, therefore, 
that the interaction region is located in the far field of the 
sources, i.e., the conditions kl.2Rl,2•l are satisfied. After 
we substitute expression (2) into the right-hand side of Eq. 
( 1 ), and keep only terms with the difference frequency, the 
right-hand side becomes 

pi = ( F•/4rrzl. t2)Ii sin [2rr(fl--f2)t-- ( klRi-k2R2) ], 
(3) 

where the amplitude factor Ii has the following compo- 
nents: 

I klk2[ k2 kl] 
Ix= 2RiR2[rXl-L)•2-Xl •lJ['"], 

Iy= Yl klk2/k2 kj\ 2 ['" 1, 

I•= 2 R•Rz•,Rz R•J ['"1; 
['"1: [(K++Z+2a)cos 2 e 

+ (K--• + 2B+ 2C) I; (4) 

x•, )h, and z• are coordinates of the vector 1t• and L is the 
distance between the sources. 

Applying a Fourier transform to Eq. ( 1 ) with a right- 
hand side defined by F__qs. (3) and (4), we find a vector 
Helmholtz equation, for which the exact form of a Green's 
(tensor) function is known) Using this Green's function, 
we can obtain the solutions for both longitudinal and trans- 
verse scattered waves. We will confine ourselves to the 

transverse scattered wave solution, since in the plane wave 
case, only the transverse difference-frequency wave satisfies 
the resonance conditions, •-3 when two longitudinal waves 
interact. In the following, we will compare the results of a 

resonance interaction of plane waves with the interaction 
of spherical waves, to infer how sphericity affects the scat- 
tered field. 

Using the expression 

(S)tr 21r f) f•, Gij(ri,r • ,2rrf)pj(r; ,2rrf)do, (5) Ui •, i• 

where Gq(ri,r • ,2rrf) is the "transverse" pa• of a Green's 
tensor, pd (r• ,2•f) is the Fourier transfore of the •. (3), 
and the integration is carded out over the interaction vol- 
ume V, we obt•n the frequency-domain solution for ith 
component of the scattered transverse wave field at the 
point M outside the interaction region (the superscript 
is omitted below). Applying an inverse Fourier transfore, 
we obtain the final solution in the time domain. For the x 

com•nent of the scattered field, the solution is 

kik2zF• f• 1 m cos 20+n[ [k2_k,• u•tri,t) = 3• K• R,R2 [ k R 2 

( 1-KaRa X K_R sin•+cos• 
1 

-•[R(k2-k•)] 

X[ • sin• (6) 
where K_ is the D• wave number, m=K+7•/3+A 
+2B, n=K--2•/3+ 2B+ 2C, kL2=kh:RL:/Rh•; 
ß =--k•R•+k2R•--2•(f•--f2)(R/ct--t), and c t is the 
shear wave velocity. 

II. PLANE WAVE INTERACTION 

In the general case, the integral (6) must be analyzed 
numerically. However, in the case where the dimensions of 
the interaction region V are small enough compared to the 
distance from the sources to the interaction region, so that 
the curvature of the primary spherical fronts can be ne- 
glected within it, an analytic solution can be found. In 
other words, this is the case of plane-wave interaction. 

Assume V to be sufficiently small. Then slowly chang- 
ing amplitude factors in the integrand of Eq. (6) can be 
taken out of the integral. Also, square roots like 
R:[(x--x')2+(y--y')2+(z--z')2] 1/2, etc. can be devel- 
oped in a series, and we can keep only linear terms with 
respect to r'/r. The quantitative criterion for applicability 
of these manipulations is given by 

r' • (/[R• TM ) •/2, (7) 
where/1, is the minimum primary wavelength and R• in is 
the minimum distance from the sources to the points in the 
interaction region. 

The above manipulations significantly simplify the in- 
tegrand in Eq. (6). Assuming that the interaction region 
has the form of a parallelepiped, that the origin and obser- 
vation point are both located in the (x,z) plane, and that 
the observation point is in the far field of DFW (K_R >> 1 ), 
we can rewrite the solution (6) in the following form: 
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sin [ -- kiRo + k2R? -- 2rr (fl -- f2) (r/ct-- t) ], 

- % el \ 
(8) 

where R 0 and R(0 2) are the distances from the sources to the 
origin located at the center of parallelepiped, x0 and Zo are 
the coordinates of the vector R o, a and c are the parallel- 
epiped sides, parallel to the x and z axes, respectively; c/is 
the longitudinal wave velocity, p is the density, A_ is the 
DFW wavelength, q is the angle between the vector r and 
the z axis, and 0 is the angle between the vectors Re and 

The displacement in Eq. (8) is the difference- 
frequency wave displacement in the x direction, generated 
by two plane intersecting longitudinal sound beams. I-3 
Note that the amplitude of the scattered wave is propor- 
tional to the primary frequencies, the squared amplitude of 
the force developed by the sources, the volume of the in- 
teraction region, and the nonlinear elastic constants of the 
material. The angular factor in Eq. (8) depending on q 
describes the directivity of the scattered wave in the (x,z) 
plane. A characteristic feature of the scattered wave direc- 
tivity pattern is that the DFW radiation is summed up 
coherently in the direction defined by the synchronism 
conditions. Coherent summation of the elementary second- 
ary sources causes the proportionality of the DFW ampli- 
tude to V. It can be shown by straightforward calculation 
that the direction of a main lobe of the directivity pattern 
given by the angular factor in Eq. (8) coincides with the 
direction determined by synchronism conditions. 

III. THE GENERAL INTERACTION CASE 

When the maximum dimension of the interaction re- 

gion does not satisfy condition (7), the curvature of the 
primary fronts cannot be neglected, and the integral in Eq. 
(6) must be analyzed numerically. 

In the numerical example given below, we use values 
of the parameters in Eq. (6) that are typical for explora- 
tion seismology experiment: L=600 m, fl=50 Hz, 
f2=70 Hz, F0=500 kN, cl=3000 m/s, ct= 1500 m/s, 
p=2000 kg/m3; and the values for m/pc• and n/Pc•, 
which are the analogs of the nonlinear parameter for this 
type of interaction, are equal to 103 . Note that nonlinear 
parameters for earth materials can have values up to 104 
(12). To simplify the numerical integration, the interaction 
region was taken to be a cube with its center located sym- 
metrically between the sources (Fig. 2). The depth of the 
center d was taken to be 1000 m. 

The geometry used in a numerical example is selected 

such that the center of the interaction region is a point 
where synchronism conditions for primary wave vectors 
are satisfied exactly. This means that the angle between 
vectors connecting points O• and O, and O2 and O in Fig. 
2 is defined by the expression • 

cos0=l/q22+ ( 2 [ q2- 1 ) (•+ 1 )/2q:•], (9) 

where ql =f2/f! and q2=ct/ct. 
Strictly speaking, the interaction is out of synchronism 

at every point except for the center of the region, because 
of the sphericity of interacting fronts. In the case of small 
V, the interaction can be considered approximately reso- 
nant, but for large V it is no longer resonant. In our cal- 
culations, we consecutively increased the volume of inter- 
action, beginning with small V satisfying the condition 
(7), and increasing V to sizes significantly exceeding this 
limit, as shown in Fig. 2, so that the influence of sphericity 
on the resonance interaction could be studied. Amplitudes 
and directivity patterns of the DFW were calculated within 
a circle of radius 1000 m. 

Figure 3 shows the calculated directivity patterns 
u•(cp)/u•m•'(q)of the DFW in the (x,z) plane. Figure 

01 L 02 

FIG. 2. Geometry used in numerical example. Here, a is side of the cube, 
d is depth of a center of the cube, 1-3 show consecutively increasing size 
of interaction volume, 4 is a circle on which the amplitudes and directivity 
patterns of DFW are calculated. 
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FIG. 3. Directivity patterns of the difference-frequency wave calculated 
for different sizes of interaction volume: (a)•a= ( 1/3)•._, 
(c)--(16/3)•_, (d)--(22/3)Z_, (e)--(28/3),•_, (f)--(56/3)•._, 
where a is the cube •ide and •_ is the DFW wavelength. 

3(a)-(f) corresponds to increasing the size of the interac- 
tion volume. The maximum dimension in Fig. 3(a) and 
(b) satisfies the criterion of Eq. (7), so that the plane-wave 
approximation can be applied, and numerically calculated 
directivity patterns coincide with the results of calculation 
using asymptotic formula (8). Figure 3(a) has a quasiom- 
nidirectional directivity pattern, because the interaction 
volume is so small that it can be considered a point source 
(cube side a----/•_/3). Directional radiation is formed in 
Fig. 3(b), where the main lobe is oriented in the direction 
of synchronism (a = 23._ ). Figure 3 (c)-(f) corresponds to 
the interaction volumes that no longer satisfy the criterion 
(7), and the form of the direetivity patterns is affected by 
the sphericity of interacting waves. In Fig. 3(c) 
[a=(16/3})t_] the angular width of the main lobe does 
not decrease, compared with Fig. 3(b), as it should be for 
the plane wave case, and Fig. 3(d) [a= (22/3}J._] already 
shows a significant deviation of the radiation direction 
from the plane-wave radiation direction. New lobes appear 
as well. Further increasing the interaction volume, the 
DFW radiation concentrates in the direction defined ap- 
proximately by the angle 310 ø [Fig. 3(e) and (f), 
a=(28/3)J._ and (56/3)J._, respectively]. Calculations 
for larger V showed that this latter direction is stable and 
does not change (increasing of interaction volume was lim- 
ited, of course, by the requirement that it must have re- 
mained in the far field of sources). 

Figure 4 shows the amplitude of the x component of 
the DFW field versus the volume of interaction in the syn- 
chronism direction (a) and in the 310 ø direction (b). 
Curve (a) shows that the amplitude in the synchronism 
direction grows linearly with volume, in accordance with 
Eq. (8), while the approximation of plane interacting 
waves holds. Then amplitude growth stops. Amplitude of 
radiation in 310 ø direction is two orders of magnitude 
weaker for small interaction volumes, but increases rapidly 
when the interaction volumes are large. This spatial direc- 
tion corresponds to a stable summation of quasicoherent 
secondary sources, when the region is large and the influ- 
ence of sphericity is significant. 
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- tc• I I I I 
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Volume of Interaction (m 3) 

FIG. 4. Amplitude of the x component of the difference-frequency wave 
particle displacement versus the volume of interaction (a) in the synchro- 
nism direction and (b) the direction of 310 e, corresponding to a maxi- 
mum radiation for large interaction volumes. 

There is a question about the effect of the shape of the 
volume on the directivity of the scattered DFW wave. The 
calculations so far are limited to cubes. We can suppose 
from qualitative considerations that for volumes that are 
small compared with the DFW wavelength the effect of the 
shape is negligible, because the region of interaction can be 
regarded as the point-like source. On the other hand, for 
large volumes having many wavelengths on its linear di- 
mension the characteristic features of the radiation pattern 
are formed in the bulk of the volume, and the presence of 
the comers of a cube can affect only minor details of the 
directivity pattern. However, an accurate statement could 
be made after numerical examination. 

The existence of a limiting direction of the DFW ra- 
diation, which does not change as interaction volume in- 
creases, can be explained by the spherical spreading of the 
primary waves, whose amplitudes decrease as 1/R. Remote 
zones of the interaction region do not affect the result of 
the interaction, because amplitudes of the primaries be- 
come very small there. Thus, characteristics of the DFW 
field are determined by a limited region of space, where 
intensities of the secondary sources are the largest. This 
fact shows that in the real seismic experiments the charac- 
teristics of the recorded nonlinearly scattered field will be 
dominated by the integrated nonlinear properties of a spa- 
tially limited region of the Earth's crust. In these experi- 
ments the actual directivity of the primary vibratory 
sources will also contribute to the confining the interaction 
volume. 

IV. DISCUSSION AND CONCLUSIONS 

Figure 3(e) and (f) shows that the main lobe of the 
DFW radiation has a "backward" direction, since the pri- 
mary sources are at the top of (x,z) plane. Thus, the in- 
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teraction of spherical waves on large nonlinear inhomoge- 
neities leads to a backscattered transverse difference- 

frequency wave. The amplitude of the backscattered wave 
reaches the value of 10-1ø-10 -9 m (Fig. 4), for the values 
of parameters used in the numerical example. These con- 
ditions could be reconstructed in a real field experiment. 
The above amplitude of the DFW is equal to amplitudes of 
weak microseismic noise, implying that nonlinearly scat- 
tered radiation can be realistically recorded. 

Due to the fact that the interaction region for spherical 
waves is localized in space, and that the DFW-radiation 
amplitude is proportional to its nonlinear parameter, this 
type of nonlinear interaction could be used in remote sens- 
ing of nonlinear properties of the Earth's crust. If vibratory 
sources of seismic waves are employed, the depth of the 
interaction region can be altered by changing distance be- 
tween sources. The values of nonlinear parameters at dif- 
ferent depths would provide valuable information about 
the physical state of the in situ rock. 
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