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[1] Numerous observations and laboratory experiments suggest that elastic vibrations can
significantly enhance transport of nonaqueous phase liquids (NAPLs) in porous media.
Our analyses suggest that in the low-frequency range, capillary forces and nonlinear
rheology of the fluid may be predominant mechanisms of vibratory stimulation.
Consequently, a model of these mechanisms is built to explain the effect of sonic waves on
fluid percolation. The model shows that the low-frequency elastic waves of relatively low
intensity can significantly enhance the flow rate of a yield stress fluid under small external
pressure gradients and aid in the mobilization of entrapped NAPL blobs by reducing
the value of the threshold gradient needed to displace the fluid. We estimate the intensity
of a sonic field to be used in the possible field implementation of this method to be in the
range of 0.2—125 W/m?.  INDEX TERMS: 1832 Hydrology: Groundwater transport; 0935 Exploration
Geophysics: Seismic methods (3025); 5139 Physical Properties of Rocks: Transport properties; KEYWORDS:
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1. Introduction

[2] The subject of vibratory (sonic or seismic) stimulation
of fluid flow in porous media has aroused increasing interest
in the last decade, primarily in connection with the appli-
cations to enhanced oil recovery (EOR) and remediation of
nonaqueous phase liquids (NAPL) contaminated aquifers.
Compared to the other methods of EOR currently in use, the
vibratory stimulation is ecologically clean and economic in
its implementation, which promotes its further use.

[3] There are numerous laboratory experiments and field
observations (see Beresnev and Johnson [1994] for a review
of existing publications) that provide evidence that sonic
stimulation can significantly enhance fluid flow in porous
media. Documented observations include such effects as
changes in water level in wells, and, more importantly, oil
production changes in response to various seismic sources.
Most of these observations, however, are of little use in
quantitative analyses due to the scarcity of data and the
complexity of the phenomena involved. For example, the
effects of an earthquake on an oil reservoir might have been
caused not only by elastic vibrations, but also by fracturing,
subsidence, or compression of surrounding rocks. The data
reported are also often inconsistent and contradictory
[Beresnev and Johnson, 1994].

[4] In the following years, numerous laboratory studies,
prompted by the field observations and the potential bene-
fits of the method shed more light on the problem, providing
more detailed observations of the elastic wave effect on
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percolation through porous media. The frequency-depend-
ant increase in the rate of oil displacement, decrease in oil
viscosity, coalescence of oil droplets, acceleration in grav-
ity-driven draining of porous samples are just a few of the
phenomena observed under laboratory conditions [Beresnev
and Johnson, 1994].

[5] The problem that the method currently faces, though,
is that the physical mechanisms by which the elastic waves
mobilize porous fluids are largely unclear [Beresnev and
Johnson, 1994; Drake and Beresnev, 1999; Roberts et al.,
2001], and there is no reliable model that could predict the
effect of stimulation or help design an optimum field setup.

[6] There are several mechanisms thought to be respon-
sible for the observed effects of sound on fluid percolation in
porous media [Aarts and Ooms, 1998; Beresnev and John-
son, 1994; Drake and Beresnev, 1999; Nikolaevskiy et al.,
1996; Roberts et al., 2001], operating in different frequency
ranges. The effect of high-frequency waves is limited to very
short distances from the source, due to high sound absorp-
tion, and will not be considered here. On the other hand,
based on published evidence and existing theoretical work,
one may conclude that, in the lower-frequency range, the
important mechanisms governing flow enhancement are
nonlinear fluid rheology and capillary effects.

[7] Another possible mechanism that can play role in
flow stimulation in the low-frequency range is the poroe-
lastic motion, which reflects volumetric changes in pores in
response to stress and pore pressure, due to the elasticity of
the solid [Wang, 2000]. It is invoked in the studies of high-
pressure pulse treatment of reservoirs, a known method of
EOR [Spanos et al., 1999], whose mechanisms, however,
are different from the weak elastic wave stimulation. The
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effect of elastic vibrations on fluid flow in a porous
medium composed of elastic channel structures has been
addressed by Pan and Horne [2000] and shown to produce
a relatively little flow enhancement, and only at resonant
frequencies, which strongly depend on the porosity of the
medium. Because of natural variations in porosity and
limited variability in the frequency of operation of available
seismic sources [Drake and Beresnev, 1999], this resonant
method appears to be of little applicability to realistic
reservoir conditions. Thus we do not consider poroelastic
effects, and focus on non-Newtonian rheology and capillary
trapping in relation to vibration-induced relative motion of
fluid and solid.

[8] Numerous theoretical and experimental investigations
have demonstrated that vibration can have a significant
effect on the flow of non-Newtonian fluids in general
[Kazakia and Riviin, 1978; Mena et al., 1979; Goshawk
and Waters, 1994; Rahaman and Ramkissoon, 1995; del Rio
et al., 1998; Tsiklauri and Beresnev, 2001a, 2001b]. The
most important result of the aforementioned studies is that,
for various rheological models, the flow of a non-New-
tonian fluid can be significantly enhanced by application of
vibrations parallel to the main flow. The significance of
capillary forces in multiphase flow is well known as well
[Bear, 1988; Hilpert et al., 2000]. The contribution of both
of these mechanisms is theoretically investigated below. We
provide a simple theoretical model that could be used for
practical calculations of the effect of vibrations on the flow
based on the rheology of realistic nonaqueous fluids and the
physics of capillary phenomena.

2. Yield Stress Model
2.1. Constitutive Relationship

[o] Oil is typically considered a Newtonian fluid. It has
been demonstrated, though, that under reservoir conditions
it often exhibits nonlinear behavior (due to interaction with
the solid matrix and the properties of high-polymer con-
stituent components [Bird et al., 1987]) that can be
described using a threshold gradient filtration model [Niko-
laevskiy, 1996]. The latter approximates the yield stress
(Bingham plastic) fluid behavior [Papanastasiou, 1987].
For oils with significant content of high-polymer compo-
nents (e.g., waxy crude oil), the existence of significant
yield stress rheology has been verified in laboratory experi-
ments [Wardhaugh and Boger, 1991].

[10] The constitutive law relating the stress and the strain
rate of a yield stress fluid in one-dimensional case (sche-
matically illustrated in Figure 1) can be written as

¥y=0 IT] < 7o

0. ; (1)
T=(p+—= )Y IT1=70
]

where T, ¥, To, and p are the stress, strain rate, yield stress,
and dynamic viscosity, respectively. This law physically
means that the fluid starts to flow when a certain threshold
stress (yield stress T() is applied.

2.2. Governing Equations

[11] In this section, we present a simple model that can be
used to estimate the effect of low-frequency sound on the
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Figure 1. The stress as a function of the rate of strain for
the Bingham fluid model.

flow of Bingham (yield stress) fluid in a straight tube of
circular cross section and constant radius. The effect of
sonic wave is represented as longitudinal vibrations (with
given frequency and amplitude) of the tube. The fluid is
assumed incompressible, and the effects of gravity are
neglected.

[12] The governing equation in this case is the momen-
tum equation [Schetz and Fuhs, 1999],

p%—%p(wV)v:—Vp—O—V-‘r. (2)
Here v, p, and p denote the particle velocity vector, pressure,
and density of the fluid, respectively, and T represents the
stress tensor.

[13] We assume that the flow is axisymmetric and that
the wall vibration phase changes slowly along the tube,
thus allowing us to neglect the changes in fluid velocity
along the axis of the tube as well. The latter assumption
is reasonable in the low-frequency range (below 100 Hz)
of interest in this paper, in which the wavelengths in a
typical oil-bearing rock are on the order of tens to
hundreds of meters. Under these assumptions, the pres-
sure gradient and the velocity components normal to the
wall of the tube can be neglected, and the contribution of
the nonlinear term in equation (2) becomes negligibly
small. Thus, in the cylindrical coordinate system, equation
(2) becomes

v dp 10
o= (- %)+ 5, ®)

where v is the z component of fluid velocity (oriented along
the axis of the tube), and T = T,.. Relationship (1) between
stress and strain rate can be written in terms of fluid velocity
[Schetz and Fuhs, 1999] as

v
p—=0 T < To
or
o (4)
ho, =T~ To T 2> To
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2.3. Steady State Flow

[14] The steady state (time-independent) analog of equa-
tion (3) is

p 10

02_;5(”)' (5)

In the following, we use a no-slip boundary condition (the
wall is immobile in the steady state case)

V(R) =0, (6)

where R is the radius of the tube, and assume an external
constant pressure gradient G,

dp
5= G. (7)

[15] Solving equation (5) for T, we obtain
r

The solution for the velocity v will consist of two parts,
depending on the value of shear stress with respect to T
according to rheology equation (4). From the solution (8),
we can see that the condition T < 7 is equivalent to » < rq,
where

140) :2T0/G. (9)

The parameter 7, defines the radius of the inner part of the
cylindrical flow where shear stress is below the value of
yield stress, and, according to equation (4), the fluid moves
as a “solid” cylinder with constant velocity. Considering
the boundary condition (6), we can see that, for r, larger
than the radius of the tube R, the only solution of equation
(5) is v(r) = 0. Thus, for any given pressure gradient,
the flow will only occur in pore channels with radii R > .
If o does not exceed R, however, the solution of equation
(5) is

R? 2
v(r):——(l—r—0> G = const r<rn

. (10)

v(r) :i Ll‘ (P —R)G—(r 7R)T0:| r>r

[16] The net flow rate through the tube can then be
calculated as

R
0= 27r/v(r)rdr. (11)
0
The integration yields
mR* 4 7
=——(1—zt+2e2 -4+ -¢*)G 1
0 &L( S6+2€ a+3a) <1y

0=0 £>1

ESE 2-3

where

£= (13)

"o

R

[17] Using equations (13) and (9), the condition § < 1
from equation (12) can be rewritten as G > G, where

Goit = 270/R. (14)

The latter defines the minimal external pressure gradient

required to mobilize the yield stress fluid in a pore channel
of a given radius.

2.4. Flow Under Effect of Vibration

[18] We model the effect of sonic wave as longitudinal
vibrations of the channel wall parallel to the tube axis, with
the given amplitude and frequency. The displacement of the
wall is

w = ae’, (15)

where « is the displacement amplitude and w is the angular
frequency of vibration.

[19] Introducing the relative velocity of the fluid with
respect to the wall,

U= (v—), (16)
we can rewrite equation (3) as
ou 10
PE—X‘F;g(VT)y (17)
where
Pw  Op 2 i OP
W — 67 paw e E, (18)

which can be considered an external volume force. It is,
effectively, the inertial force acting on the fluid because of
the pore wall (solid skeleton) oscillations. This term, along
with the no-slip boundary condition, is what determines the
coupling between the fluid and the solid matrix in our
model when vibrations are present.

[20] The no-slip boundary condition becomes

U(R) = 0. (19)

[21] For frequencies below a certain “critical” value,

T

Je= Bl (20)

where d is the average diameter of the pores, the flow of
a Newtonian fluid in a pore channel can be considered
quasi-steady [Biot, 1956]. Although this condition was
obtained for a Newtonian fluid, it will also hold for the
yield stress fluid with the same value of dynamic
viscosity [Papanastasiou, 1987]. For a typical oil
reservoir pore diameter of 0.1 mm, density and viscosity
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Figure 2. Dimensionless flow rate ¢ versus dimensionless
pressure gradient g (defined in text) for various values of the
effective amplitude of vibration s (dimensionless).

of crude oil of 800 kg/m® and 5 mPa s, respectively, we
obtain f. ~ 500 Hz.

[22] Since we are interested in the low-frequency range
effects only (frequencies of the order of 100 Hz and less,
which is well below the critical frequency (equation (20))),
the time derivative in equation (17) can be neglected [Biot,
1956]. Under this assumption, equation (17) becomes
identical to equation (5) except that the pressure gradient
term is replaced with the external volume force (equation
(18)). The solution will thus still be provided by equation
(12). The only difference is that X includes an oscillatory
term, so we need to calculate the time average to obtain the

net flow rate:
T
[ o
0

where T is the period of oscillations.

[23] Since the effect of vibration in our model is equivalent
to the addition of an oscillating term to the pressure gradient
(compare equations (3) and (17)—(18)), it will effectively
increase the flow rate when the vibration-induced volume
force (equation (18)) is acting in the same direction as the
external pressure gradient, and decrease it in the opposite
phase of the wave. Consequently, even though the average of
the vibration-induced volume force term in equation (18)
over an oscillation period is zero, its net effect on the flow
rate (equation (21)) will not average out to zero for nonzero
pressure gradients due to nonlinearity in equation (12)
(considering that € in equation (12) includes the pressure
gradient term (equations (9) and (13)), which, for the case of
applied vibration, contains the external field (equation (18)).

[24] The results presented in later sections are obtained by
numerical integration of equation (21) using solution (12).
Since a high number of data points could be generated, the
simple trapezoidal rule was used for integration, with the
resulting relative precision of 10~°.

(0) = 21

Nl =

2.5. Results
[25] Itis convenient to analyze the solution in terms of the
following dimensionless variables, representing the flow
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rate, pressure gradient, and amplitude of oscillations,
respectively:

q = 0/ 0p(Gerit),

8= G/Gcrit7 (22)

s = paw? /G,

where Q is defined by equation (21), and Qp (G) is the
Poiseuille flow rate (the flow rate of a Newtonian fluid in
the same tube [Schetz and Fuhs, 1999]),

©R*

T (23)

0r(G) =

[26] Figure 2 presents the dependence of the dimension-
less flow rate ¢ on the external pressure gradient g for
several values of the amplitude of vibration s. Figure 3,
conversely, demonstrates the dependence of g on s for
different values of g. From Figure 2, the most noticable
effect of vibration is the decrease in the critical pressure
gradient below which no flow occurs, for a given pore
diameter. For a real porous medium, this would mean
mobilization of fluid otherwise stagnant (trapped) in the
pores of small size (equations (12) and (13)), therefore
decreasing the amount of residual oil in the reservoir. Figure
3 shows that the sound also increases the flow rate for a
given pressure gradient.

[27] Figure 4 demonstrates the relative increase in the
flow rate due to vibrations,

q—4q
J(qo): q007

(24)

where g, denotes the steady state flow rate (no vibrations
applied). It can be observed that, for the low values of ¢,
the relative increase in the flow rate can be very high, while
for the higher values of ¢, the relative increase is much
smaller. Note that the values of J at near-zero values of g,
are of no practical importance, since they correspond to
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Figure 3. Dimensionless flow rate g versus effective
vibration amplitude s (defined in text), for various values of
the dimensionless pressure gradient g.
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Figure 4. Relative increase in flow rate due to vibrations
versus steady state flow rate (no vibrations applied) for
various values of the effective amplitude of vibration s.

near-zero external pressure gradients (negligibly small flow
rates). In other words, vibrations cannot induce the flow of
fluid at rest in this model, they can only aid in further
mobilization of the fluid already in motion; this explains J
tending to infinity as ¢, tends to zero.

2.6. Estimation of Stimulation Parameters

[28] To estimate the parameters of a sonic field required
to achieve a significant effect in mobilization of the entrap-
ped fluid, we need to know the value of the yield stress .
The general problem with the values of this quantity in oil
under reservoir conditions is that there are no reliable data
on it. Apparently, the values of yield stress are typically too
small and are of no direct interest to most exploration or
production applications; this may explain why insufficient
attention has been paid to its accurate measurements. The
exception is crude waxy oil, where nonlinear rheology is
more pronounced and is of practical significance due to
applications in pipeline transportation [Chang et al., 1999].
Thus the values for yield stress we use in this study are
estimates only.

[29] The yield stress parameter can vary significantly
depending on oil composition, temperature and the
dynamics of the sharing process from near-zero values
(for high-grade oil components) to the values on the order
of 1 Pa for waxy crude oils at low temperatures [Ward-
haugh and Boger, 1991]. Under reservoir conditions,
however (due to high temperatures), we should expect
much lower values of yield stress [Wardhaugh and Boger,
1991]. We estimate the typical values of T to be in the
range of 0.002—0.05 Pa, which, for R = 0.05 mm, will
result in the values of critical pressure gradient (equation
(14)) of 80-2000 Pa/m.

[30] It is common to use the intensity of a continuous
monochromatic sonic wave [Telford et al., 1996, equation
4.30] to characterize the physical effects of vibrations,

(25)

1
I = Eazwz Vop:

where V' and p, are the sound velocity and average density
of the saturated porous medium.
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[31] To estimate the intensity needed to mobilize the
fluid, we note that the flow of the yield stress fluid will
only start when

max|X| > Gt (26)

[32] For infinitesimally small pressure gradients, we

rewrite equation (26) using equation (18) as
paw? > Gt. (27)

Substituting the value of the amplitude of vibrations «

obtained from equation (27) into equation (25), we obtain
_mV

¢ 2w2p2 crit*

(28)

Equation (28) gives an exact value for the case of vibrations
along the pore tube’s axis. For an arbitrarily oriented
channel, it will include a coefficient defined by the angle
between the channel’s axis and the direction of the
displacement in the wave. There can be additional macro-
scopic parameters controlling the applicability of this
analysis to the real porous media, such as direction of
propagation and type of elastic wave (compressional or
shear) in relation to the flow direction and preferred pore
orientation. In the latter calculations, we assume a compres-
sional wave propagating along the flow direction, which is
defined by the external pressure gradient. The qualitative
inferences of the analysis will not change if another wave
type is considered.

[33] Using the parameters typical of oil-bearing sand-
stones, V' = 2000 m/s, p, = 2000 kg/m®, p = 800 kg/m’
(density of oil), and the frequency of 100 Hz, for the range
of critical pressure gradient listed above, we obtain /. in the
range of 0.2—125 W/m?. For the porous media with larger
pore size, the critical pressure gradient will be lower
(equation (14)), and therefore the minimal required intensity
1. (equation (28)) will be smaller too. Increasing the
frequency will also decrease /.. It should be remembered,
though, that an increase in frequency will also result in
higher wave attenuation, and, therefore, it will be more
difficult to deliver the intensity /., required to mobilize the
fluid, to a particular part of geologic formation.

2.7. Flow in Two-Fluid System

[34] Let us define the efficiency of oil recovery as the
percentage of oil in the total produced fluid. To estimate the
effect of vibrations on this parameter, we consider a model
of porous medium saturated by two immiscible fluids,
occupying separate (nonmixing) volumes of the reservoir
(Figure 5), one of which (oil) exhibits the yield stress
behavior, while the other (water) is a Newtonian fluid. We
will assume 100% saturation of both fluids in their respec-

Figure 5. Representation of reservoir used in the model of
a two-fluid system.
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Figure 6. Coefficient of oil recovery, defined in the text,
versus dimensionless pressure gradient g (fraction of
volume of the reservoir occupied by water o = 10%), for
various values of the effective amplitude of vibration s.

tive domains and the same external pressure gradient G
acting on both oil and water. The longitudinal vibrations of
the pore walls will not change the net flow rate of a
Newtonian fluid [Kazakia and Riviin, 1978]; thus we can
write equation (23) as

©R*

QW(G) = - 8p )

(29)

where ,, is the viscosity of water. The flow rate of oil (Q,;))
can be calculated as before using equations (12)—(14), (18),
and (21). The fraction of the volume of oil flowing through
a unit area of reservoir to the total volume of fluid, which is
the coefficient of recovery, is then

_ (1= a)Qai
OLQW + (1 - OL)Qoil ’

where « is the fraction of volume of the reservoir occupied
by water. Figure 6 shows Q, as a function of pressure
gradient in the same dimensionless units as above. Viscosity
of water p,, was taken to be five times smaller than that of
oil; water was assumed to occupy 10% of the pores (o =
0.1). Figure 6 demonstrates that the application of sonic
vibrations significantly increases the outflowing oil-to-water
ratio, especially for the relatively low values of pressure
gradient, allowing higher efficiency of oil recovery under
the same pressure field conditions.

O, (30)

3. Capillary Forces
3.1. The Problem

[35] The effect of capillary forces on fluid percolation
through a pore channel can be viewed as equivalent to that
of finite yield stress in the fluid, in that the flow can only
begin when a certain threshold pressure gradient is applied.
This equivalence occurs due to the phenomenon of capillary
trapping, which takes place when the meniscus is “pinned”
on mechanical irregularities or chemical impurities on the
walls, so that a finite force is needed to release the contact
line [de Gennes, 1985; Leger and Joanny, 1992; Hilpert et
al., 2000].
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[36] For the purposes of this analysis, we assume oil to
be a Newtonian fluid (to avoid unnecessary complications
of the model, since our goal is to estimate the effect of
capillary trapping independent of other mechanisms). The
geometry of the problem is modeled as that of an oil blob
trapped in a pore channel of circular cross section (the
length of the blob is much larger than the radius of the
channel), confined from both sides by the spherical water-
oil interfaces (Figure 7a). Pore walls vibrate longitudinally
with the given frequency and amplitude.

[37] To model the capillary pinning of the menisci, we
assume that the surface of the wall is sufficiently rough, to
be able to “trap” the three-phase contact line. The rough-
ness heights are assumed to be small enough not to notice-
ably affect the flow in the tube.

3.2. Governing Equations and Solution

[38] The governing equation for this problem is the
same as equation (2), except T represents the Newtonian
viscous stress tensor. Since L > R, the velocity field in the
blob may be approximated by that in an infinitely long
tube. In this case, the governing equation for this problem
becomes identical to equation (3), except that T represents
pure viscous stress, which for axisymmetric flow of New-
tonian fluid is

v
T= ME? (3 1)
where p denotes the dynamic viscosity of oil, and v, as
before, is the z component of fluid velocity. Substituting
equation (31) into equation (3) and introducing the relative
velocity U (equation (16)), we write

oU

P = (32)

10 oUu
“;5(’“5)7

Figure 7. Geometry of a capillary-trapped oil blob with
pinned contact lines in a cylindrical pore channel. Solid
lines indicate equilibrium state with no external pressure
gradient; dashed lines indicate external pressure gradient
applied. (a) General case; (b) equilibrium contact angle 90°.
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where X is defined by equation (18). Assuming quasi-static
conditions (see section 2.4), we write the solution of
equation (32) as

1
U(r,t) = ™ (= R)X(1). (33)
Knowing the velocity profile, we can calculate the flow rate
(equation (11)):

_ TR

o) = En

X(1). (34)

3.3. Capillary Parameters and Pressure Balance

[39] The constant pressure gradient part of X (equation
(18)) can be calculated as

9 _Ap,
oz L’

(35)

where Ap, = p, — p, is the pressure difference between
both menisci in oil (hereafter the superscript pluses and
minuses refer to the right (larger z) and left (smaller z)
menisci, respectively) (Figure 7a). Neglecting the effect of
gravity, Ap, can be calculated using the pressure balance
equations on each meniscus,

P, =Py t+re, (36)
where p;, define the pressure in water on each side of the
blob, and p_ are the capillary pressures.

[s0] While the values p;, are unknown, the pressure
difference in water between both menisci can be approxi-
mated using the known value of the external pressure
gradient G that acts on both oil and surrounding water (this
approximation is possible due to the assumption that the
existence of oil blob does not significantly affect the macro-
scopic flow of water in the regions surrounding the blob),

Py —p, =G L (37)
Substituting equations (36) and (37) into equation (35), we
obtain

Jp pS —pe
=Gt Lo
0z + L

(38)

[41] The behavior of p. depends on the equilibrium (no
external pressure gradient, no vibration) state of each menis-
cus, defined by the contact angles 6. In natural systems, one
can expect this parameter to vary over a wide range (due to
different material properties and complex geometry), which
makes it difficult to use equation (38) directly.

[42] For the purposes of our analysis, we approximate
equation (38) by assuming the equilibrium contact angles
o = 90°. This choice of the contact angle is made as an
approximation allowing a simple use of the obtained for-
mulae to provide an estimate of the effect of vibration.
Precise treatment of this problem would not only require
the knowledge of the actual contact angles, but also consid-
eration of the fact that, generally, each meniscus would reach

2-7

the critical pressure independently, at different times, result-
ing in unsteady flow regimes and other complicated phe-
nomena; these were not possible to address in this article.

[43] In case of the equilibrium contact angle 6y = 90°, the
two menisci at any given time will have the same modulus
but a different sign of the radius of curvature, as illustrated
in Figure 7b. Considering equation (36), this assumption
yields

Pl =-P. =De (39)
Equation (34) then becomes
Q:LM(X*—%)7 (40)
8| L
where
X* = —pawe™ — G. (41)

[44] For the capillary pressure p. smaller than some critical
value (p.)eit, the three-phase contact line will remain pinned
[de Gennes, 1985; Charlaix and Gayvallet, 1992; Leger and
Joanny, 1992], and therefore no flow will occur. If the
capillary pressure exceeds the critical value (which is equiv-
alent to some finite force needed to mobilize the menisci), the
blob will become mobile. However, as soon as the capillary
pressure on the menisci drops below (p.)erit, the flow will
stop again. This process can thus be described as the flow
with a critical pressure gradient, which is dependent on
(Pe)erit- Given that, we can rewrite equation (40) in the form

R4
(1) :“8—u<x* —0) ¥ =C

o) =0

(42)
|X* < C

where C denotes the minimum pressure gradient required to
mobilize a particular oil blob,
C =2(pe)erit/L- (43)

The net flow rate can be calculated using equation (21) as
before.

3.4. Results

[45] The critical capillary pressure (p.)ei¢ can vary
significantly, depending on local geometry of the pores,
roughness and chemical composition of the pore walls, etc.
[de Gennes, 1985]. We can, however, estimate the upper
bound for this parameter from the Laplace’s capillary
equation using the pore radius R (which is the minimum
possible radius of curvature of a spherical meniscus in a
cylindrical tube):

(pc')critS 20/R7 (44)
where o is the surface tension. The typical value for (p.)cric
will be significantly less, probably on the order of half of the
top estimate equation (44) [Charlaix and Gayvallet, 1992].

[46] As an example, we consider an oil blob in a medium
with an average pore radius of 0.05 mm. For ¢ = 20 mN/m
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Figure 8. Dimensionless flow rate g of a capillary blob
versus dimensionless pressure gradient g for various values
of the effective amplitude of vibration s.

and taking half of the value calculated from equation (44),
we obtain (p.)eir ~ 400 Pa. The value of the critical
pressure gradient C will vary depending on the size of the
blob L. Assuming a “bundle of capillary tubes” model
[Dullien, 1992] and L = 1 m, we obtain C = 800 Pa/m,
which is within the range of the critical pressure gradients
estimated for a yield stress fluid (see section 2.6). Similarly,
for L= 0.1 m, the critical pressure gradient will be C = 8000
Pa/m. This demonstrates that, within our model, the oil at
very low residual saturation [Dullien, 1992; Nikolaevskiy et
al., 1996] will be difficult to mobilize even at high inten-
sities of acoustic stimulation.

[47] To further analyze the effects of vibration on capil-
lary trapping and emphasize its analogy with the yield stress
behavior, we again use the dimensionless variables (equa-
tion (22)), with the critical pressure gradient G.;; (equation
(14)) replaced by C (equation (43)). Figure 8 presents the
average percolation rate of the blob ¢, calculated from
equations (21), (22), and (42)—(44), as a function of
external pressure gradient g. Figure 9 demonstrates the
dependence of g on the amplitude s for different values of
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Figure 9. Dimensionless flow rate g of a capillary blob
versus effective vibration amplitude s, for various values of
the dimensionless pressure gradient g.
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Figure 10. Relative increase in capillary flow rate due to
vibrations versus steady state flow rate (no vibrations
applied) for various values of the effective amplitude of
vibration s.

g. Figure 10 shows the relative increase in the capillary flow
rate (equation (24)). All curves bear significant resemblance
to the relevant plots for the yield stress model (Figures 2—
4), in that vibrations decrease the critical pressure gradient
at which the blob is mobilized, as well as increase its
percolation rate.

4. Conclusions

[48] In this paper, we theoretically investigated the effect
of low-frequency sonic vibrations on the flow of NAPLs
through a porous medium, focusing on two distinct and
related physical mechanisms: the yield stress rheology of
the pore-filling fluid and capillary trapping. Both mecha-
nisms are found to produce similar behavior at the macro-
scopic level. As follows from empirical data, both can be
important players in the mobilization of reservoir fluids in
acoustic stimulation technologies.

[49] We have found that vibrations can significantly
decrease the value of minimum pressure gradient required
to mobilize entrapped fluid, as well as increase the
average flow rate. The effects of vibrations are most
pronounced in the zones of relatively low pressure gra-
dients, and will be small if the external pressure gradient
is high. The theory thus indicates that the application of
sound can increase the efficiency of secondary and tertiary
oil recovery methods, as suggested based on vast empiri-
cal data by the authors of a literature review [Beresnev
and Johnson, 1994].

[s0] The intensity of the sonic field required to provide
practically significant effect in the mobilization of entrapped
fluids is on the order of 0.2—125 W/m?, depending on the
frequency and the parameters of the porous medium and the
fluids, which is achievable with the available sonic trans-
ducers [Beresnev and Johnson, 1994].

[s1] The development of a quantitative physical theory
of the effects of sound on fluid percolation in rock has
been a major impediment in the applications of sonic
stimulation technologies. While our theory does not serve
an exhaustive description of all possible phenomena in
play, it provides a model based on realistic assumptions,
which can be used as guidance in emerging field applica-
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tions or a starting point in the development of future, more
comprehensive theories.
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