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Abstract Small-scale slip heterogeneity or varia-
tions in rupture velocity on the fault plane are often
invoked to explain the high-frequency radiation
from earthquakes. This view has no theoretical
basis, which follows, for example, from the repre-
sentation integral of elasticity, an exact solution for
the radiated wave field. The Fourier transform,
applied to the integral, shows that the seismic spec-
trum is fully controlled by that of the source time
function, while the distribution of final slip and
rupture acceleration/deceleration only contribute to
directivity. This inference is corroborated by the
precise numerical computation of the full radiated
field from the representation integral. We compare
calculated radiation from four finite-fault models:
(1) uniform slip function with low slip velocity, (2)
slip function spatially modulated by a sinusoidal
function, (3) slip function spatially modulated by
a sinusoidal function with random roughness added,
and (4) uniform slip function with high slip veloc-
ity. The addition of Basperities,^ both regular and
irregular, does not cause any systematic increase in
the spectral level of high-frequency radiation, ex-
cept for the creation of maxima due to constructive
interference. On the other hand, an increase in the
maximum rate of slip on the fault leads to highly

amplified high frequencies, in accordance with the
prediction on the basis of a simple point-source
treatment of the fault. Hence, computations show
that the temporal rate of slip, not the spatial het-
erogeneity on faults, is the predominant factor
forming the high-frequency radiation and thus con-
trolling the velocity and acceleration of the
resulting ground motions.
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1 Problem formulation

A view often expressed in modeling seismic radiation
from finite faults is that high frequencies are generated
by small-scale variations or roughness in static slip, slip
velocity, or rupture velocity (acceleration and decelera-
tion) over the fault plane (Madariaga 1977, 1983;
Somerville et al. 1999, p. 60; Shi and Day 2013). A
consequence, for example, often assumed in the inver-
sion of strong-motion records for slip distribution on
ruptures of major earthquakes is that, once data have
been low-pass filtered, the static-slip heterogeneity can
be neglected (Beresnev 2003, p. 2451). The latter as-
sumption probably originates from the classic work of
Haskell (1964, equation 62 and p. 1830), who inferred
increased high-frequency-energy content in radiated
spectra when statistically independent Bpatches^ of co-
herent radiation were introduced on the fault plane.
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Understanding the source of high frequencies in
earthquake motion is important from the practical stand-
point, as they control the velocity and acceleration of
ground shaking used in characterizing seismic hazard.
To pinpoint the origin of high frequencies from the

theoretical standpoint, it is useful to turn to the repre-
sentation theorem of elasticity. The theorem prescribes
the exact wave field radiated by a displacement discon-
tinuity in an elastic space (Aki and Richards 1980,
equation 14.37):

ui x; tð Þ ¼ μ
4πρ

∬

30γinpγpγqvq−6vinpγp−6niγqvq
R4 ∫

R

.
β

R

.
α

t
0
Δu ξ; t−t

0
� �

dt
0

þ 12γinpγpγqvq−2vinpγp−2niγqvq
α2R2 Δu ξ; t−

R
α

� �

−
12γinpγpγqvq−3vinpγp−3niγqvq

β2R2
Δu ξ; t−

R
β

� �
þ 2γinpγpγqvq

α3R
Δu ξ; t−

R
α

� �

−
2γinpγpγqvq−vinpγp−niγqvq

β3R
Δu ξ; t−

R
β

� �

2
66666666666664

3
77777777777775
d∑ ξð Þ: ð1Þ

Here, ui(x, t) is the ith component of the radiated
displacement; x and ξ are the coordinates of the obser-
vation point and the point on the fault surface, respec-
tively,Δu ξ; tð Þ ¼ u ξ; tð ÞjΣþ−u ξ; tð ÞjΣ− is the vector of
displacement discontinuity across the fault plane with
sides Σ+ and Σ−, Δu(ξ, t) = nΔu(ξ, t), Δu(ξ, t) is the
slip (Bsource time^) function,Δu ξ; tð Þ is its time deriv-
ative (the slip rate), n is the unit vector in the direction of
slip, ν is the unit normal to the fault pointing fromΣ− to
Σ+, R = |x − ξ|, γ = (x − ξ)/R, α and β are the P- and S-
wave propagation speeds, and μ and ρ are the shear
modulus and density of the medium. The double inte-
gration in Eq. (1) is carried over the fault planeΣ(ξ); the
summation convention is assumed for repeated sub-
scripts. We have also used the explicit compact convo-
lution integral in the first term in the integrand instead of
the long notation through the function F(t) as in the
original equation (14.37) of Aki and Richards
(Beresnev 2017).

To acquire the Fourier spectrum of equation (1), we
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Then, for a source time function in the form of a
radially propagating rupture,

Δu ξ; tð Þ ¼ U ξð ÞΔu t−
r
v

� �
; ð3Þ

where U(ξ) is the distribution of the final-slip values
over the fault plane, r = |ξ − ξ0|, ξ0 is the hypocenter
point, and v is the rupture-propagation speed, applying
the time-shift, derivative, and convolution theorems, we
obtain the Fourier transform of Eq. (1):
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Here, Δu(ω) and t1(ω) are the Fourier transforms of
Δu(t) and t1(t), respectively, and we have assumed that the
temporal functionΔu(t) does not depend on the position on
the fault plane. The function t1(ω) evaluates analytically:
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Equation (4) shows that the spectrum of the radiated
displacement is that of the source time function Δu(ω)
modified by a factor representing an integral over the
fault plane, with the integrand equal to U(ξ) multiplied
by a factor of complicated form in the brackets. The
integral describes the frequency-dependent directivity,
caused by the interference of the waves radiated to an
observation point from different parts of the fault. There
is no mechanism by which this integral would preferen-
tially amplify high frequencies. This inference rules out
heterogeneity in static slipU(ξ) as the systematic source
of high frequencies.

The enrichment of the spectra in high-frequency ener-
gy through the introduction of asperities, described by
Haskell (1964), may be an artifact caused by the author’s
treatment of the patches of coherent radiation as indepen-
dent small sources and the assumption of additivity of
their power spectra. Radiation from smaller sources has
higher corner frequencies, which should result in in-
creased high-frequency content after summation.

One finds direct evidence of the increase in high-
frequency radiation simply by subdivision of the con-
tinuous fault plane into a set of smaller Bsubfaults^ in
the study by Boore and Joyner (1978). Both Haskell and
Boore and Joyner employ simple analytical solutions for
the emitted wave field allowed by their neglect of all
near-field terms. Far-field emission from smaller
sources has higher corner frequencies, which results in
increased high-frequency content of the total radiation
from all subfaults relative to the Bsmooth^ continuous
rupture. Although Boore and Joyner randomize both
static slips and the lengths of their fault segments, the
latter are still characterized by a smaller mean length
relative to that of the fault as a whole (Boore and Joyner
1978, p. 287). The smaller the length, the greater the
corner frequency of subfault radiation (Boore and
Joyner 1978, Fig. 9), with the ensuing enhancement in
high-frequency energy (Boore and Joyner 1978, Fig. 7).

Such enhancement is not the effect of incoherence of
radiation from adjacent subfaults (Haskell) or random-
ness in the distribution of slip over the fault plane (Boore
and Joyner) but rather a consequence of the simplified
methodology used based on the analytical representa-
tion of fault radiation through a system of independent
small sources with only the far-field terms retained.
Conversely, Eq. (1) presents the general case that uses
continuous integration of all terms for the radiated field.

Equation (4) demonstrates that the main contributor
of high frequencies to the fault radiation is the source
time function itself, while the distribution in static slip
U(ξ) merely plays a modulating role. However, the
degree of the influence of U(ξ) can only be ascertained
by precise numerical integration, to which we proceed.

2 Numerical calculation of radiated wave field

We follow the procedure of the numerical computation
of the displacement field ui(x, t) in Eq. (1) described by
Beresnev (2017), which can be outlined as follows. The
analytical form of slip Δu(ξ, t) is taken as
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where the parameter τ determines how fast the fault
dislocation rises to its final value (Beresnev and
Atkinson 1997, equation 6). However, merely serving as
a characteristic time scale in Eq. (6), the quantity τ cannot
be considered as a controlling physical parameter unless it
is substituted by a quantity having clear physical meaning
and related to the process of faulting. This is achieved
through the parameter vmax introduced in the following.

The temporal form of slip represented by Eq. (6) is a
reasonable choice, because a point source with the same
time function radiates exactly the commonly observed
Bω−2^ Fourier spectrum in the far field, with the fre-
quency corner ωc defined by τ,

juiPS x;ωð Þj ¼ CM 0
1
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ωc≡
1

τ
; ð8Þ

(Beresnev and Atkinson 1997, equations 6 and 11).
Here, M0 = μU0A is the seismic moment, μ is the shear
modulus of the medium,U0 is the average total slip at the
source, A is the rupture area, and C is a frequency-
independent factor. The temporal function (6) is some-
times referred to as the BOhnaka ramp^ (Anderson and
Richards 1975, p. 353), after Ohnaka (1973, equation 16)
who introduced it on entirely different grounds. If vmax is
the maximum velocity of the dislocation rise, then τ is

τ ¼ U0

evmax
; ð9Þ

where e is the base of the natural logarithm (Beresnev
2001, p. 398). The physical quantity vmax then substitutes
the yet formally defined time scale τ as a governing
physical parameter of the faulting. U(ξ) and vmax become
the two free, physically grounded parameters of the mod-
el. WithΔu(ξ, t) as in Eq. (6), the convolution integral in
the first term of Eq. (1) evaluates analytically, and the
integrand is completely defined. The double integration in
Eq. (1) is carried out to the precision of eight decimal
digits. The hypocenter is placed at the center of a vertical
right-lateral strike-slip fault, for which the geometric co-
efficients γinpγpγqνq, νinpγp, and niγqνq in the integrand
reduce to simple analytical forms. The elastic constants

are taken asα = 5 km/s, β ¼ α=
ffiffiffi
3

p
, ρ = 2700 kg/m3, and

the rupture-propagation speed as v = 0.8β. Fault dimen-
sions are 3.4 km × 3.4 km, which, according to the
empirical relation logA = −3.49 + 0.91 Mw, where Mw is
the moment magnitude (Wells and Coppersmith 1994,
Table 2A), corresponds to a Mw 5 earthquake. The aver-
age fault offsetU0 = 0.14 m then follows from combining
the definitions of the seismic moment and that of the
moment magnitude, Mw = (2/3) logM0 − 10.7. The com-
puted displacement time histories are low-pass filtered
with the cut-off frequency of 45 Hz and then numerically
differentiated twice to obtain the acceleration waveforms.

It follows from Eqs. (7)–(9) and the definition of the
moment that the high-frequency (ω > ωc) spectrum is
controlled by vmax:

juiPS x;ωð Þjh f ¼ CAμe2
v2max
ω2U 0

: ð10Þ

Consequently, vmax, as the physically meaningful
parameter of the source time function, but not the fault

heterogeneity, can be expected to be the most significant
factor responsible for the formation of high-frequency
radiation from faults. Equation (10) has been obtained
by treating the fault as a point source, with only the far-
field terms considered; however, the suggested behavior
can now be verified through the direct computations of
the full integral (1).

3 Effects of maximum slip velocity and slip
irregularities on radiated spectra

Figure 1 shows the geometry of the problem, depicting
the fault plane, the location of the origin O of the cartesian
coordinate system, and the orientation of the axes. All
computations have been performed for an observation
point A having the coordinates {0, 200, 200} m. To
examine the effects of the maximum slip rate, on one
hand, and fault-slip heterogeneities, on the other, com-
plete fault-perpendicular components u2(x, t) of the dis-
placement field were calculated for four models, all hav-
ing the same average total slip and thus the same seismic
moment. The x2-component was chosen because it was
found to be the largest. Model 1 (the Bbase^ model: low
slip velocity, homogeneous slip) has vmax = 1 m/s and a
constant total offset in Eq. (6) over the entire fault plane,
U(ξ) =U0. Model 2 (low average slip velocity, slip dis-
turbed in a regular manner) keeps the same vmax = 1 m/s
but superimposes a sinusoidal modulation on the constant
U0 frommodel 1with thewavelength equal to one quarter
of the side L of the fault and the amplitude of 0.5U0. Thus,
the final offset in Eq. (6) for model 2 isU(ξ) =U0(1 + 0.5
sin kξ1 sin kξ3), where k = 2π/λ and λ = L/4. The parame-
ter τ is still determined by Eq. (9) with the mean displace-
mentU0 and remains fixed: the source time function (6) is
thus scaled by U(ξ) keeping the same vmax = 1 m/s on

B C 

x3

0 
x1

x2
A 

3

200

Fig. 1 Geometry of the problem (not to scale)
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average. Model 3 (low average slip velocity, slip dis-
turbed in both regular and stochastic manner) still retains
vmax = 1 m/s in the same procedure but superimposes a
random component on the slip from model 2: U(ξ) =
U0[1 + 0.5 sin kξ1 sin kξ3 + 0.5η(ξ1, ξ3)], where the ran-
dom variable η(ξ1, ξ3) is drawn from a normal distribution
with zero mean and standard deviation of 0.06,
constrained to equal −1 if its value accidentally fell below
−1. In models 2 and 3, therefore, both the final slip and
vmax are heterogenized. The quantityU(ξ) in model 3 was
realistically generated on a grid with a step of λ/20 in each
direction ξ1 and ξ3 on the fault plane and then interpolated
during the numerical evaluation of integral (1). With λ/
20 ≈ 43 m, the largest wavenumber in the resulting
randomized slip is on the order of kmax ≈ 2π/
43 ≈ 0.15 m−1; the maximum frequency that this slip
can generate can then be estimated as fmax ≈ kmaxv/
2π ≈ 55 Hz. Figure 2 plots the grid of U(ξ) over the fault
resulting from model 3. Finally, model 4 is the Bbase^
model 1 in which the maximum slip rate is increased by a
factor of two, vmax = 2 m/s (high slip velocity, homoge-
neous slip).

3.1 Effects of slip irregularities

Figure 3 displays the ratio of the modulus of the Fourier
spectrum of the particle-acceleration time history at the
observation point computed for model 2 to that for
model 1.We found that the evaluation of Fourier spectra
of acceleration was more stable than that of displace-
ment, even after cosine tapering, because of the Gibbs

phenomenon affecting the spectra of displacement due
to a significant constant offset at the end of the traces.
Owing to the time differentiation that removes the off-
set, these effects were absent from the acceleration
traces. It is seen from Fig. 3 that the introduction of
the sinusoidal modulation (slip Basperities^) in model 2
did not lead to any systematic enhancement in high-
frequency content (increase in the ratio from one), ex-
cept for the appearance of isolated peaks. The following
simple calculation helps explain the origin of the peaks.

Asperities emit waves when the motion on the rest of
the fault has already ceased. Constructive interference at
the observation point will cause additional amplification
relative to the case of uniform slip. Consider, for exam-
ple, the two leftmost asperities in the upper row of the
fault (Fig. 2; disregard the superimposed noise). Their
centers are marked B and C in Fig. 1, having the coor-
dinates {3λ/4, 0, −λ/4} and {λ + 3λ/4, 0, −λ/4}, respec-
tively, where λ = L/4 = 850 m. From the coordinates, the
distances are 785.2 m between points B and A and
1556.5 m between points C and A, giving the difference
ΔR = 771.3 m in the paths of wave travel from the
asperities B and C to the observation point. The waves
will interfere constructively if ΔR is a multiple of P- and
S-wavelengths: ΔR = nλP and ΔR = nλS, from which the
frequencies of constructive interference are deduced as
f = nα/ΔR and f = nβ/ΔR. All the frequencies obtained
from these two relationships are plotted as vertical lines
in Fig. 3. They coincide with some peaks (only two
asperities have been considered), indicating that the
maxima are most likely caused by constructive interfer-
ence. The strongest peak may be associated with the
contribution from several asperities, which is not
accounted for by this simple example. The relationships
also indicate that the frequencies of constructive

Fig. 2 Distribution of both sinusoidally and stochastically dis-
turbed total slip resulting from model 3

Fig. 3 Ratio of the moduli of Fourier spectra of radiation ofmodel
2 to model 1. The vertical lines indicate the frequencies of con-
structive interference, calculated in the text, of the waves from the
asperities centered at B and C in Fig. 1
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interference are not necessarily limited to the very large
values only. This emphasizes the fact that roughness on
the fault modifies radiated spectra in the wide frequency
band and cannot exclusively contribute to the generation
of high-frequency radiation.

Figure 4 shows the moduli of acceleration spectra of
model 3 and model 1 (a) and their ratio (b). The meaning
of the vertical lines is the same as in Fig. 3. The accel-
eration time histories, from which the spectra were
calculated, are exhibited in Fig. 5 (for ease of compar-
ison, the black line has been shifted by 0.1 g in the
vertical direction). The addition of stochastic noise to
the slip in model 2 did not make any appreciable differ-
ence in the radiation: the spectral ratios in Figs. 3 and 4
are nearly identical. This inference coincides with the
conclusion made by Beresnev and Atkinson (1998)
through the stochastic finite-fault simulation of radiation
from the 1994 Northridge, California earthquake. In
their study, randomizing slip distribution versus a pub-
lished inverted model did not lead to a statistically
greater error in the simulation of acceleration time his-
tories near the causative fault relative to observations.
As also could be expected, the added stochastic

component did not create any significant additional
interference patterns in Fig. 4 either. The comparison
of traces in Fig. 5 shows that the addition of asperities on
the fault, both regular and irregular, led to only minor
effects on the acceleration time histories.

3.2 Effect of maximum slip velocity

Model 4 increases the maximum slip rate vmax on the
uniform fault to 2 m/s from 1 m/s in model 1. Based on
the point-source approximation, the effect of this in-
crease on the radiated spectra can be estimated as fol-
lows. From Eqs. (8) and (9), fc = ωc/2π = evmax/(2πU0).
Given U0 = 0.14 m and vmax = 2 m/s, the corner fre-
quency is fc = 6.2 Hz. From Eq. (10), therefore, an
increase in vmax by a factor of two should cause, all
other parameters being equal, an amplification of the
modulus of Fourier spectrum by a factor approaching
four at frequencies above 6.2 Hz. Since the temporal
form of displacement from a point source in the far field
is simply the time derivative of Δu(t), the same en-
hancement can be expected to apply to the spectrum
emitted by the finite fault if Δu(ω) in Eq. (4) is the
dominant factor. Figure 6 verifies this point by plotting

a

b

Fig. 4 a Moduli of Fourier spectra of radiation from model 1
(black line) and model 3 (gray line). b Ratio of the moduli of
Fourier spectra of model 3 to model 1. The meaning of the vertical
lines is the same as in Fig. 3

Fig. 5 Particle-acceleration time histories of radiation frommodel
1 (black line) and model 3 (gray line)

Fig. 6 Ratio of the moduli of Fourier spectra of radiation ofmodel
4 to model 1
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the ratio of the spectra of the full radiation of model 4 to
model 1. The ratio gradually approaches the level of
four, on average, as predicted by the point-source treat-
ment. Note that, while neither regular nor irregular
modulation of slip distribution and of maximum slip
velocity led to any systematic increase in the high-
frequency content, an increase in the maximum slip rate,
a physical parameter of the source time function, caused
a significant systematic enhancement. This corroborates
the point made in the discussion of Eq. (4) that the
source time function is the main source parameter con-
trolling the strength of high-frequency radiation from
ruptures.

To further demonstrate the dominant effect ofΔu(ω)
relative to the integral over the fault plane in Eq. (4),
Fig. 7 plots the ratio of Δu(ω), calculated for the tem-
poral function in Eq. (6), for vmax = 2 m/s to that for
vmax = 1 m/s. The spectral ratio was obtained from the
displacement time histories calculated from Eq. (6)
through exactly the same numerical procedure as the
ratios in Figs. 3, 4, and 6. Comparison with Fig. 6 shows
that, indeed, the rise of the ratio to the value of four at
high frequencies is entirely caused by the respective
enrichment in high-frequency content in the slip func-
tion, as vmax doubles, while the integral in Eq. (4) is
merely responsible for the modulation seen in Fig. 6 and
caused by the interference effects.

4 Discussion

The effects of fault roughness, on one hand, and average
peak slip velocity as the physical parameter of the
temporal dependence of fault displacement, on the other,
on the high-frequency spectra of fault radiation have

been investigated through the numerical evaluation of
the representation integral of elasticity. The latter de-
scribes the exact wave field emitted by a finite rupture.
The introduction of regular and irregular spatial modu-
lation of the source time function does not lead to any
systematic enhancement in the high-frequency content
relative to a uniform fault, except for the creation of
spectral maxima by constructive interference of waves
emanating from asperities. Conversely, the increase in
peak velocity of the slip causes significant amplification
of the high-frequency radiation. Based on the control of
radiated spectra by that of the slip function Δu(ω), the
level of increase and the frequency above which it
occurs can be quantitatively described through a simple
point-source model of the fault. The calculations show,
therefore, that the average maximum rate of slip on the
rupture plane, not the spatial heterogeneity of the final
slip or heterogeneity of the maximum slip rate, is the
principal parameter governing the level of the high-
frequency part of the radiated spectra and thus the
amplitudes of ground velocity and acceleration in the
resulting strong seismic motions.

Kame and Uchida (2008) found the source of high
frequencies in an increase in slip rate following the
coalescence of two cracks and the resulting stress con-
centration. Although their model is entirely different, the
finding echoes ours: the slip rate is the primary mecha-
nism for the generation of high frequencies.

The same conclusion about the lack of sustaining
effect on high-frequency radiation will apply to the
variable rupture speed. Acceleration/deceleration of rup-
ture can be incorporated by replacing the time delay r/v
in Eq. (3) by a fault-position dependent Δt(r) of arbitrary
form. The e−iω

r
v multiplier before the brackets in the

integrand of Eq. (4) will then become e−iωΔt(r). It is seen
that variations in Δt(r) (the timing of the arrival of
rupture), as those in U(ξ), will modify the directivity
of radiation, described by the integral, but will not cause
any systematic effects on the preferential generation of
high frequencies.

Dunham et al. (2011) computed seismic radiation
from a non-planar strike-slip fault with a surface topog-
raphy (not to be confused with our planar strike-slip
fault with heterogeneous distribution of final slip). The
authors concluded that the topography roughness was a
source of high-frequency radiation (Dunham et al. 2011,
Fig. 7a). We do not find these results contradicting ours.
Note that the authors themselves attribute the high-

Fig. 7 Ratio of the moduli of Fourier spectra of the source time
function Δu(t) from Eq. (6) with vmax = 2 m/s to that with
vmax = 1 m/s
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frequency generation to the roughness-caused rupture
acceleration/deceleration. Although they do not display
the time histories of slip on their non-planar fault, they
infer large stress perturbations induced by the roughness
(Dunham et al. 2011, p. 2311). Recall that, in Kame and
Uchida’s work, such stress concentrations led to elevat-
ed slip rates. We suspect, therefore, that the increased
high-frequency content, attributed by Dunham et al. to
acceleration/deceleration, is rather the effect of the in-
creased local slip rates due to stress concentrations.

Madariaga (1977) postulated that the only sources of
high-frequency radiation are the Bstarting^ and
Bstopping^ phases. All conclusions therefore are drawn
from the analysis of the first motions of these phases
(Madariaga 1977, equations 34, 38, 43, 46, 50; p. 647).
In Madariaga’s study, these motions are discontinuous,
which leads to an artificial enrichment in high frequen-
cies. The author states that Bthere is no high frequency
radiation while rupture proceeds at constant rupture
velocity^ (p. 646). This is incorrect: the statement con-
tradicts the general relationship (4), which shows that
Δu(ω) controls the high-frequency radiation according
to Eq. (10) even if v = const. Theoretically, such radiation
may be as strong as desired according to the value of vmax.

5 Data and resources

No data were used in this paper. All inferences were
made through the numerical evaluation of the represen-
tation integral (1) as described.
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