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heory of vibratory mobilization on nonwetting fluids
ntrapped in pore constrictions
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ABSTRACT

Quantitative dynamics of a nonwetting ganglion of residu-
al oil entrapped in a pore constriction and subjected to vibra-
tions of the pore wall can be approximated by the equation of
motion of an oscillator moving under the effect of the exter-
nal pressure gradient, inertial oscillatory force, and restoring
capillary force. The solution of the equation provides the con-
ditions under which the droplet experiences forced oscilla-
tions without being mobilized or is liberated from its en-
trapped configuration if the acceleration of the wall exceeds
an unplugging value. This solution provides a quantitative
tool for estimating the parameters of vibratory fields needed
to liberate entrapped, nonwetting fluids. For typical pore siz-
es encountered in reservoir rock, wall accelerations must ex-
ceed at least several m/s2 and even much higher levels to mo-
bilize the droplets of oil; however, in the populations of gan-
glia entrapped in natural porous environments, many may re-
side very near their mobilization thresholds and may be
mobilized by extremely low accelerations as well. For given
acceleration, lower seismic frequencies are more efficient in
liberating the ganglia.

INTRODUCTION: THE PROBLEM

Mobilization of residual oil by elastic waves and vibrations has
ong been considered a possible method of enhanced petroleum re-
overy �Beresnev and Johnson, 1994; Nikolaevskiy et al., 1996;
oesio et al., 2002; Roberts et al., 2001, Roberts et al., 2003; Rob-
rts, 2005�. Over the past few years, a number of studies have been
evoted to a theoretical justification of the method at the pore level.
hey sought an explicit description of the pore-scale mechanism by
hich the vibrations mobilized the entrapped nonwetting fluids,
hich could then be used to predict the results of field applications.
n the basis of the Poiseuille flow approximation, Hilpert et al.
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2000� calculated the frequencies of pulsing pressure in an axisym-
etric channel with a sinusoidal profile that maximized the volume

f the displaced nonwetting phase. Although no explicit mobiliza-
ion criteria were established, it was proposed that the entrapped-
lob oscillations at these resonance frequencies could lead to blob
iberation. Graham and Higdon �2000� and Beresnev et al. �2005�
eveloped a complete computational-fluid-dynamics �CFD� simula-
ion of the mobilization of spherical droplets in constricted cylindri-
al channels. Iassonov and Beresnev �2003� formulated a theory of
ibratory mobilization for the scenarios in which the fluid exhibited
yield-stress behavior caused by either its rheology or the postulated
uid pinning on the wall, albeit without considering a specific pin-
ing mechanism. In a more recent study conducted by Iassonov and
eresnev �manuscript in review, 2006�, the mobilization theory in

inusoidally constricted channels was formulated in the approxima-
ion of laminar Poiseuille flow, which again had to be justified
hrough a complete CFD simulation for every channel profile used.

Despite the significant progress achieved in understanding the
onditions for oil-blob mobilization by elastic waves and vibrations,
physical theory that could readily be used to calculate the mobiliza-

ion conditions for given geometric parameters of the channel, fre-
uency, and amplitude of the vibratory field is still missing. The
FD models described still require the use of supercomputers, even

or the simplest geometries, and do not offer much physical insight.
predictive model that could provide a transparent physical analy-

is of the mobilization process is needed to advance its practical ap-
lications. The theory developed in this paper fills this gap.

The article proceeds as follows. We start with a brief outline of the
apillary mechanism of the vibratory mobilization of entrapped non-
etting fluids. An equation of motion incorporating the elements of

his mechanism is then derived, followed by a quantitative analysis
f the mobilization phenomenon for typical scenarios based on the
olutions of this equation. Conclusions are provided with the main
nferences from the numerical analysis. Appendices A and C are de-
oted to the verification of the assumptions made to simplify the nu-
erical analysis, and Appendix B contains an exact calculation of

ay 10, 2006; published online October 23, 2006.
Science I,Ames, Iowa 50011. E-mail: beresnev@iastate.edu.
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N48 Beresnev
he center of mass of a droplet in a constricted channel, used in for-
ulating the governing equation.

PHYSICAL MECHANISM OF THE VIBRATORY
MOBILIZATION OF ENTRAPPED

NONWETTING GANGLIA

To set the stage for the description of the mobilization phenome-
on, we first review the capillary mechanism of the mobilization as
lluminated by Graham and Higdon �2000� and Beresnev et al.
2005�.

Capillary forces cause the entrapment of ganglia of a nonwetting
uid in pore constrictions. Let us assume, for simplicity, spherical
enisci and complete nonwetting. When the leading meniscus of the

il blob is in the constriction, a capillary-pressure imbalance builds
p inside the ganglion according to the Laplace equation,

�Pcap = 2�� 1

R2
−

1

R1
� , �1�

here R2 and R1 are the radii of the downstream and the upstream
enisci, respectively, and � is the oil/water interfacial tension. This

nternal pressure difference opposes the external pressure drop
cross the length of the ganglion caused by the external pressure gra-
ient; when these two equalize, the ganglion is entrapped �Figure 1
f Beresnev et al., 2005�. The external gradient needs to exceed a
ertain unplugging threshold �P0 to move the ganglion through the
apillary barrier.

The conditions for the entrapment and mobilization can be graph-
cally illustrated on the diagram in Figure 1 �straight line�, which
hows the oil flow rate as a function of applied external force, where
Ps is the static external gradient attempting to drive the ganglion

hrough the constriction �Beresnev et al., 2005�. The flow is plugged,
nd the oil resides in static equilibrium as long as � �Ps�� � �P0� �the
o-flow zone�, above which it resumes at a normal Darcy rate �the
ow zone�. In the frame of reference of the wall, the application of

ongitudinal vibrations of the wall is equivalent, for a cylindrical
hannel, to the addition of an inertial body force acting on the fluid,
osc�t� = −� fa�t�, where � f is the density of the fluid and a�t� is the

igure 1. The mechanism of oil-ganglion liberation under the com-
ined effect of external pressure gradient and oscillatory force.
cceleration of the wall �Biot, 1956, equation 2.4�. Here, without the
oss of generality, we consider the component of the wall motion
long the pore axis. Because the length of an oil ganglion is much
maller than the seismic wavelength, the body force can be consid-
red constant. This oscillatory force is added to the external gradient
s illustrated by its time history plotted vertically around �Ps in Fig-
re 1. If it is sufficiently strong to satisfy the condition

�� Ps� + �Fosc� � �� P0� , �2�

hen over the period of time when this condition holds, the ganglion
s unplugged and moves forward beyond the neck of the constric-
ion. The radius of the leading meniscus then starts to increase pro-
ressively, which leads to the decrease in the resisting capillary
orce.As a result, the ganglion accelerates upon exiting the constric-
ion, experiencing what is often called a Haines jump �e. g., Melrose
nd Brandner, 1974�. This leads to its mobilization. The condition
xpressed by inequality 2 can be referred to as the static mobilization
riterion. It assumes that the ganglion has enough time over one peri-
d of vibration to be brought to the neck of the constriction, which
an only happen if the period is long enough. Clearly, if the frequen-
y is sufficiently high, this criterion breaks down; above a certain
ritical frequency, the ganglion is no longer liberated with the vibra-
ion amplitude following from the static criterion. The ganglion can
evertheless still be mobilized if the amplitude increases to compen-
ate for the lack of time to reach the neck; the mobilizing amplitude
an thus be expected to increase with the frequency above the criti-
al-frequency value. The critical frequency can be obtained from the
quation of motion of the ganglion. The decrease in the mobilizing
ffect of vibrations with increasing frequency, predicted by this
echanism, was experimentally demonstrated by Li et al. �2005�.
The dynamics of the ganglion’s motion and liberation from the en-

rapped configuration for an arbitrary amplitude and frequency can
e obtained through quantitative modeling of the mechanism shown
n Figure 1. In the next section, we proceed to the formal statement of
his problem.

MODEL FORMULATION

roblem geometry

We will consider an axisymmetric, periodically constricted sinu-
oidal channel, whose radius varies with the axial coordinate z as

r�z� = rmax�1 +
1

2
� rmin

rmax
− 1��1 + cos �

z

L
�� , �3�

here rmin and rmax are the minimum and the maximum radii and 2L
s the spatial period. The geometry of the problem is illustrated in
igure 2, where the sinusoidal channel and the ganglion in it are

igure 2. Geometry of the problem.
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Oil mobilization by vibrations N49
hown; z1 and z2 are the coordinates of the three-phase upstream and
ownstream contact lines, respectively, and Rm is the radius of the
pherical menisci. The ganglion’s motion under the external gradi-
nt is from left to right. A zero contact angle �complete nonwetting
y oil� is again assumed. The meniscus radius is then related to the
oordinate of the contact line as

Rm�z1,2� = r�z1,2��1 + r�2�z1,2� , �4�

here r��z� is the derivative, Rm�z1� is the radius of the trailing me-
iscus and Rm�z2� is the radius of the leading meniscus.

A limitation of this representation of the menisci as continuous
pherical surfaces is that they may not intersect the walls of the chan-
el. This is equivalent to the requirement that the menisci radius of
urvature always be smaller than that of the wall profile. The radius
f curvature of the wall is Rcurv = �1 + r�2�3/2/�r�� �e.g., Harris and
tocker, 1998, p. 520�. For a sinusoidal function, the minimum radi-
s of curvature occurs at its crests, where, from equations 3 and 4, the
eniscus radius is rmax. Calculating Rcurv at the crests of the profile

escribed by equation 3 and requiring that it be greater than rmax,
eads us to the no-intersection condition

2L2

�2rmax�rmax − rmin�
� 1, �5�

hich restricts the channel geometries that can be used in our model.

quation of motion

A nonwetting oil ganglion can reasonably be assumed to slide
long the wetting film of water on the pore wall as a moving mass
ith little interaction and, therefore, little friction, at least near the

tatic equilibrium before it is mobilized. For comparable densities of
il and water, the oscillatory body force Fosc�t� = −� f a �t� applied to
oth fluids is approximately the same; the oil motion is restricted by
he resisting capillary force and the water motion by the viscosity;
he relative motion of oil and water can in the first approximation be
eglected �a more quantitative justification of this assumption is pro-
ided in a later section�. The behavior of the ganglion can then be
easonably approximated as that of a frictionless body driven by the
alance of forces acting upon it, which include the external gradient,
he capillary force resisting it, and the oscillatory body force induced
y the vibrations. The resultant force is applied to the center of mass
f the body. Such a representation, of course, will be only valid prior
o the leading meniscus crossing the neck of the constriction, after
hich the ganglion will start to accelerate infinitely because the re-

tricting capillary force will no longer be present. The behavior of
he ganglion in this configuration is nevertheless of little interest to
s, because we only seek the conditions leading to the mobilization.

A similar approach was taken by Averbakh et al. �2000� to study
he mobilization dynamics of a droplet of wetting fluid in a straight
hannel whose entrapment was caused by the contact-angle hystere-
is, that is, a different physical phenomenon.

Writing the second Newton’s law for the balance of forces acting
pon the ganglion, we obtain the equation of motion in the form

�oVg
d2zc

dt2 = − �PsVg − �oa�t�Vg

+
2�Vg

z2 − z1
� 1

Rm�z1�
−

1

Rm�z2�� , �6�

here z is the coordinate of the center of mass, � is the density of
c o
il, and Vg is the ganglion’s volume. Here, the last term on the right-
and side is the capillary force, obtained from the capillary-pressure
ifference, as in equation 1, by switching to its gradient. The signs of
ll forces have been taken into account, considering that the force is
ositive if it acts to the right. The volume cancels out in equation 6,
eaving the balance of pure body forces.

With the use of equation 4 for the menisci radii, equation 6 trans-
orms to

�o
d2zc

dt2 = − �Ps − �oa�t� +
2�

z2 − z1
� 1

r�z1��1 + r�2�z1�

−
1

r�z2��1 + r�2�z2�
� . �7�

Strictly speaking, the representation −�oa�t� that we use for
he oscillatory body force is valid for a cylindrical channel only; in
uch channels, the z-derivatives of the fluid velocity vanish. We dis-
uss the validity of this assumption for a constricted channel in
ppendixA.
The exact coordinate of the center of mass of the ganglion zc is a

omplicated irrational function of z1, z2, and the ganglion’s volume

g: zc = zc �z1,z2,Vg�, which is derived in Appendix B, equations
-1–B-8. This function should be substituted into equation 7, result-

ng in a differential equation for z1, z2, and their time derivatives.
his equation then should be solved in conjunction with the equation

g = Vg�z1,z2�, where Vg is a given fixed volume, which also is a
omplicated irrational function �equations B-2 and B-6–B-8�. Even
or the simple geometry used, to solve such a system of two equa-
ions, in which functions z1 and z2 and their derivatives are only im-
licitly defined, would be a formidable task. Simplifications must be
ought.

Let us approximate the center of mass by zc = �z1 + z2�/2, which
laces it in the middle of the ganglion, and assume that the ganglion
s of approximately constant length l, z2 = z1 + l. These approxima-
ions are, of course, better the smaller the difference between rmax

nd rmin �the small-slope approximation�. Because the exact values
f zc and l are known, we can always estimate how much error we
ommit. Appendix C provides the worst-scenario-case calculation
f the error in this approximation.

With these substitutions for zc and z2, equation 7, normalized by L,
ecomes

d2�z1/L�
dt2 −

2�

�oLl� 1

r�z1��1 + r�2�z1�

−
1

r�z1 + l��1 + r�2�z1 + l�
� +

a�t�
L

+
�Ps

�oL
= 0,

�8�

hich describes the position of the ganglion �its left contact line�
riven by the forces acting upon it.

Note that, although equation 8 is valid for any frequency of vibra-
ion, a realistic viscous fluid, whose behavior it approximates, al-
ays has a finite response time to dynamic forcing. This characteris-

ic time scale is typically estimated from the problem of a startup
ow in response to a step force. For a cylindrical channel, the fluid
ow is fully developed over a time scale of
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� =
� fr

2

�
, �9�

here r is the radius of the channel and � is the fluid viscosity
Johnson, 1998, p. 9-11�. Consequently, if the period of vibration ex-
eeds � ,

T � � , �10�

he fluid is allowed a sufficient time to respond, although, at shorter
eriods, the vibrations are inefficient in inducing the flow. The upper
imit of the frequencies to be used in the vibratory stimulation of oil
eservoirs is thus on the order of 1/� . Our subsequent analysis will
onsider the frequencies lower than this upper bound. The time scale
can be calculated from the typical viscosities of the fluids of inter-

st. If the condition expressed by inequality 10 is satisfied, the pro-
ess, itself, of the ganglion’s deformation can be neglected because it
an be considered instant.

RESULTS

Equation 8 has no known analytical solutions, despite the simple
eometry of the problem. It was solved numerically to the precision
f sixteen decimal digits. In all simulations, the following character-
stic fixed values of the problem parameters were used: L = 10−2 m,

= 0.040 N/m, �o = 103 kg/m3; the other parameters were varied
s described. The ganglion with the length l = 0.6 L was placed be-
ween values of z/L = −1 and 0 in Figure 2. The static initial condi-
ion z1/L = const at t = 0 was used, meaning that the ganglion was at
est in equilibrium between the external gradient and the resisting
apillary force �the entrapped configuration�. The second initial con-
ition was zero velocity, d�z1/L�/dt = 0 at t = 0. The sinusoidal vi-
ration of the wall a�t� = a0 sin 2�ft was turned on at t = 0, where
0 is the acceleration amplitude, and f is the frequency. All simula-
ions were run to 20 periods of vibrations.

In the following, we consider three typical combinations of rmax

nd rmin, representative of the range of values that can be encoun-
ered in reservoir rock. To illustrate a variety of scenarios, we consid-
r two extreme cases of both a narrow �rmax = 10−4 m, rmin = 10−5 m�
nd a wide�rmax = 10−3 m, rmin = 10−4 m� pore, in both of which

able 1. Mobilization parameters in the narrow (rmax = 10−4 m
106 N/m3, � = 10−2 s.

External
gradient

� �Ps�
�N/m3�

Initial
condition
of ganglion
at rest
z1/L�t = 0�

Mobilizing
acceleration
a0 predicted
from the
static
criterion
�m/s2�

Com

0.01 Hz 0.1 H

1.11	106 −0.6389 31 Between
31–32

Betwe
31–32

0.55	106 −0.8070 591 Between
591–592

Betwe
590–5
�mobi
after 2
period
max/rmin = 10. In addition, we consider a smooth pore �rmax

10−3 m, rmin = 5	10−4 m� in which rmax/rmin = 2. All the geome-
ries satisfy the condition expressed by formula 5.

he narrow pore (rmax = 10−4 m, rmin = 10−5 m)

Here, it is instructive to analyze two cases in which �1� the static
radient �Ps is close to the unplugging threshold �P0, and �2� �Ps is
ar from �P0.

ase 1

According to equation 1, the capillary-pressure difference across
he length of the ganglion is 2�	1/Rm�z1 + l� − 1/Rm�z1�
; for rmax

10−4 m and rmin = 10−5 m, its maximum value is about 6846.1 Pa.
his gives the unplugging-threshold body force � �P0� of
846.1 Pa/�0.6	10−2 m� �1.141	106 N/m3. According to the
dea of Case 1, we set the static gradient close to this value, � �Ps�

1.11	106 N/m3. From the criterion expressed by formula 2, we
hen have the following condition for the mobilization: �oao + 1.11

106 N/m3 �1.141	106 N/m3, from which a0 �31 m/s2. This is
he predicted acceleration amplitude that will mobilize the ganglion
rom its entrapped position.

The ganglion’s equilibrium configuration for � �Ps� = 1.11
106 N/m3 can be found by equating the capillary-pressure differ-

nce to the external pressure drop across the length of the ganglion,
�	1/Rm�z1 + l� − 1/Rm�z1�
 = � �Ps�l. This algebraic equation was
olved numerically to find its root z1/L in the interval of z/L from −1
o −0.6, to yield z1/L�−0.6389. Because the length of the ganglion
/L = 0.6, the right contact line is at z2/L�−0.0389, or close to the
eck of the constriction. The value of the static gradient, the en-
rapped configuration, and the predicted mobilizing acceleration are
espectively summarized in the first three columns of Table 1.

For a characteristic fluid viscosity of 10−3 Pa.s, the time scale
f the ganglion’s response to vibrations is given by equation 9, �
103 kg/m3 	 �10−4 m�2/10−3 Pa.s = 10−2 s. This, according to eq-

ation 10, limits the frequencies of consideration for rmax = 10−4 m
o lower than approximately 100 Hz. Above this frequency, the vi-
ratory action will have little effect on the fluid.

= 10−5 m) pore. The capillary-threshold body force is 1.141

obilizing acceleration a0 �m/s2� Frequency
of breakdown
in the static
criterion
�Hz�1 Hz 10 Hz 100 Hz

Between
30–31
�mobilized
after 2
periods�

Between
27–28
�mobilized
after 3
periods�

Between
32–33
�mobilized
after 8
periods�

�100

Between
589–590
�mobilized
after 11
periods�

Between
449–450
�mobilized
after 18
periods�

Between
231–232
�mobilized
after 14
periods�

�200
, rmin

puted m

z

en

en
91
lized

s�
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Oil mobilization by vibrations N51
In columns 4-8, Table 1 lists the amplitudes of the mobilizing ac-
eleration that were obtained from the numerical solution of govern-
ng equation 8; these can be compared to the predicted value. The
omputations were carried out for the vibration frequencies of 0.01,
.1, 1, 10, and 100 Hz. At each frequency, a0 was increased sequen-
ially until the mobilizing amplitude was found; its bracketed values
or Case 1 are in the first row of Table 1. The ganglion was consid-
red mobilized if it started to accelerate out of the constriction within
he 20-period computation time.

Figure 3 shows the results of such computation for f = 10 Hz and
0 = 28 m/s2. This example shows the forced oscillations of the gan-
lion around its entrapped position with the driving period of 0.1 s;
owever, shorter-period oscillations are also clearly observed.
hese are the natural �free� oscillations of the droplet. The droplet
onfined in the constriction by the restoring forces acting both from
he left �the external gradient� and from the right �the resisting capil-
ary force� is an oscillator, having its own natural frequency. Once
isturbed from the equilibrium, the droplet experiences both forced
nd free oscillations seen in Figure 3. Because of the nonlinear char-
cter of equation 8, it was not possible to find an analytical expres-
ion for the natural frequency; its value will clearly depend on
he magnitude of the restoring force, that is, both the external gradi-
nt and the pore geometry, and will be highly variable. For the sce-
arios considered in this article, it ranges from �1 to 100 Hz �cf.
igure 3�.
The results in Table 1 show close correspondence between the

redicted mobilizing acceleration and its value found from the nu-
erical solution, for all frequencies. If the ganglion is not mobile af-

er the first period of vibrations, the period at which it is mobilized is
rovided in parentheses in Table 1. Generally, the higher the fre-
uency, the more periods are necessary for the mobilization to occur.
his tendency is explained by the superposition of forced and free
scillations of the ganglion. Their interference causes fluctuations in
he current droplet position, pushing it closer or further away from
he neck of the constriction. Because of these fluctuations that are
ifficult to quantitatively predict, the mobilization may not occur un-
il the period in which both types of oscillations add up in such a way
s to push the ganglion sufficiently far into the neck; for example, as
n period 3 �around 0.3 s� in Figure 3. When the forcing period is
ong compared to the free period, there is a high probability that such
constructive interference occurs during the first vibratory cycle;

owever, when the forcing period becomes smaller, such conditions
ay not materialize until subsequent cycles. For example, at the vi-

ration frequency of 100 Hz, the ganglion is not mobilized until the
ighth cycle of vibrations �Table 1�.

The mobilization moment is clearly indicated in the simulations
s the time of the beginning of a precipitous withdrawal of the gan-
lion from the constriction �approximately 0.3 s in Figure 3�. Such
ivergent solutions, of course, are of no interest because our goal is
o track the ganglion only until it has been mobilized.

The mobilizing amplitude calculated from the static criterion in
quation 2 breaks down if the frequency is high enough that this am-
litude becomes insufficient to move the ganglion to the neck of the
onstriction.Above this critical frequency, the mobilizing amplitude
ust increase. The critical frequency can be estimated from the time

t takes for the droplet to move from its entrapped to mobilized con-
guration for a step increase in external force from �Ps to �P0. Then,

f the vibratory period is longer than the critical period, the ganglion
ill experience, approximately, a sufficient forcing near the maxima
f F to be transported to the neck. For Case 1, it was checked nu-
osc
erically that the ganglion was fully mobile for � �P0� = 1.15
106 N/m3. Subject to a step increase in external force from � �Ps�
1.11	106 N/m3 to � �P0� = 1.15	106 N/m3, it took approxi-
ately 0.01 s to become mobilized. This estimates the frequency of

he breakdown in the static criterion to be on the order of 100 Hz;
his value is listed in the last column of Table 1. Note that all frequen-
ies considered in Case 1 turned out to be below this critical value,
hich explains the independence of the mobilizing amplitude on the

requency of vibrations. The case when the critical frequency is suf-
ciently low to show its effect on the mobilizing acceleration is con-
idered in a later section.

ase 2

For Case 2, the static gradient is set away from the unplug-
ing threshold, � �Ps� = 0.55	106 N/m3 �approximately half of
ts value for Case 1�. From the calculations similar to those shown
or Case 1, we obtain the predicted mobilizing acceleration of

591 m/s2, and the entrapped position z1/L�−0.8070. The gangli-
n’s right contact line is, therefore, at z2/L�−0.2070, or far from the
eck. Table 1 �second row� lists all the Case 2 parameter values and
he results of numerical simulation in the same format as for Case 1.

Figure 4 is an example of the ganglion’s behavior at f = 0.01 Hz
nd a0 = 591 m/s2 �just below the mobilizing value of 592 m/s2�.
his example illustrates the forced oscillations of the blob around its
quilibrium, with hikes to very near the level of z1/L = −0.6, and
emonstrates the need for the latter’s exceedance. Once pushed
lightly past this level, which happens at a0 = 592 m/s2, the gangli-
n becomes mobilized.

From Table 1, the mobilizing acceleration predicted from the stat-
c criterion and that obtained from the numerical solution agree well
p to the frequency of 10 Hz, at which the actual acceleration drops
o between 449 to 450 m/s2, and even further to 231 to 232 m/s2 at
00 Hz.Asignificant increase in the total number of periods elapsed
efore the mobilization took place can also be noticed toward these
igher frequencies. Both the drop in the acceleration and the in-

igure 3. Ganglion’s position in the constriction as a function of time
btained from numerical solution of equation 8. rmax = 10−4 m, rmin

10−5 m, � �Ps� = 1.11	106 N/m3, f = 10 Hz, a0 = 28 m/s2.

igure 4. Ganglion’s position in the constriction as a function of
ime. rmax = 10−4 m, rmin = 10−5 m, � �Ps� = 0.55	106 N/m3, f =
.01 Hz, a = 591 m/s2.
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rease in the number of periods are again explained by the interfer-
nce between the forced and natural oscillations as illustrated by
igure 5. It shows the ganglion’s motion for a0 = 232 m/s2 and f
100 Hz comparable to the natural frequency. As it should be for

he superposition of two nearby frequencies, a beating pattern with a
omplex envelope is observed. The resulting large total amplitude
hat occurred during the 14th cycle �around 0.15 s� led to the mobili-
ation while a0 was lower than the predicted value.

he wide pore (rmax = 10−3 m, rmin = 10−4 m)

We now turn attention to another extreme case in which both rmax

nd rmin have been increased by an order of magnitude. The unplug-
ing-threshold body force, calculated from the maximum capillary-
ressure difference, is about 1.143	105 N/m3. The static gradient is
et close to it, ��Ps� = 1.1	105 N/m3; the predicted mobilizing ac-
eleration a0 �4 m/s2; the equilibrium configuration is z1/L�
0.6445; and the characteristic response time � = 1 s. Table 2 sum-
arizes the parameters and the results in the same format as in Table

able 2. Mobilization parameters in the wide (rmax = 10−3 m, r
105 N/m3, � = 1 s.

External
gradient

� �Ps�
�N/m3�

Initial
condition
of ganglion
at rest
z1/L�t = 0�

Mobilizing
acceleration
a0 predicted
from the
static
criterion
�m/s2�

Co

0.01 H

1.1	105 −0.6445 4 Between

igure 5. Ganglion’s position in the constriction as a function of
ime. rmax = 10−4 m, rmin = 10−5 m, � �Ps� = 0.55	106 N/m3, f

100 Hz, a0 = 232 m/s2.

able 3. Mobilization parameters in the smooth (rmax = 10−3 m
1201.452 N/m3, � = 1 s.

xternal
radient
�Ps�
N/m3�

Initial
condition
of ganglion
at rest
z1/L�t = 0�

Mobilizing
acceleration
a0 predicted
from the
static
criterion
�m/s2�

Co

0.01 Hz

1201.45 −0.6862 2	10−6 Between
�1–2�	
10−6
. For all frequencies �0.01, 0.1, 1 Hz�, the predicted mobilizing ac-
eleration is the same as the one calculated from the numerical solu-
ion.At all frequencies, the droplet is mobilized during the first cycle
f vibrations. Note that for pores of this relatively large diameter
rmax = 1 mm�, only very low frequencies affect the fluids because
f the restriction imposed by equation 10.

he smooth pore (rmax = 10−3 m, rmin = 5�10−4 m)

The mobilizing accelerations in the previous examples ranged
rom several to several hundred m/s2. According to the data avail-
ble to the author �E. L. Majer, personal communication, 2004;
urpening and Pennington, 2005� and from the author’s experience,
ealistic borehole seismic sources are capable of producing accelera-
ions under the best scenarios not exceeding �0.1 m/s2 at the dis-
ances of a few hundred meters; these accelerations fall off rapidly as
he distance increases. These are not significant values. Considering
ractical applications, should the accelerations be that large as pre-
icted? The following case is instructive because it illustrates an
normous range of accelerations that can lead to oil mobilization in
atural porous media, including very low values as well.

This case is different from the previous one in that rmin has been
rought closer to rmax, to make for a smoothly varying pore wall.As a
esult, the capillary-threshold body force became smaller, ��P0�

11201.452 N/m3, and, to illustrate the point, the static gradient is
eliberately set to a very close value, ��Ps� = 11201.45 N/m3. The
quilibrium configuration is z1/L�−0.6862. The predicted mobiliz-
ng acceleration is indeed very low, on the order of 2	10−6 m/s2

Table 3�. The values of a0 obtained from the numerical solution are
lso given in Table 3; for the frequencies of 0.01 and 0.1 Hz, they are
lose to the predicted accelerations.

0−4 m) pore. The capillary-threshold body force is 1.143

d mobilizing acceleration a0 �m/s2� Frequency
of breakdown
in the static
criterion
�Hz�0.1 Hz 1 Hz

Between 4–5 Between 4–5 �25

= 5�10−4 m) pore. The capillary-threshold body force is

d mobilizing acceleration a0 �m/s2� Frequency
of breakdown
in the static
criterion
�Hz�0.1 Hz 1 Hz

Between
�8–9�	10−7

�mobilized
after 16
periods�

Between
�1–2�	10−5

�mobilized
after 5
periods�

�0.5
min = 1

mpute

z

4–5
, rmin

mpute
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Another notable feature of this simulation is that the estimated fre-
uency of the breakdown in the static mobilization criterion is now
bout 0.5 Hz. If the forcing frequency is above this value, the mobi-
izing amplitude must increase, or it will be unable to ensure the nec-
ssary transport of the droplet to the neck of the constriction. This
oint is well illustrated in Table 3 for the forcing frequency of 1 Hz,
hich is above the critical frequency. The computed mobilizing ac-

eleration at this frequency is an order of magnitude higher than that
redicted from the static criterion, as was anticipated.

The numerical solutions for all three combinations of rmax and rmin

llow calculation of an average speed of the ganglion as its right con-
act line moves to the neck of the constriction. For example, for the
ase in which rmax = 10−4 m, rmin = 10−5 m, the approximate dis-
ance �0.04	L� separating the right contact line from the neck was
raveled in about 0.01 s; this provides the velocity of �0.04

10−2 m/0.01 s = 0.04 m/s. On the other hand, the maximum
elocity that the fluid would have traveled with, had it not been re-
tricted by the capillary force, can be estimated by the velocity of
he Poiseuille flow in the channel with the radius rmax, vPois

rmax
2 � �Ps�/4� �e.g., Woan, 2002, p. 85�. Substituting the mobil-

zing gradient, vPois = �10−4 m�2 	1.14	106 N/m3/�4	10−3 Pa.s�
3 m/s, which is about 75 times faster than the motion controlled

y the capillary force alone. Similarly, for the case in which rmax

10−3 m and rmin = 10−4 m, the contact-line velocity is obtained
rom the travel distance of �0.04 L and the travel time of �0.04 s
the inverse of the value in the last column of Table 2�, to be approxi-
ately 0.01 m/s. The corresponding Poiseuille velocity for the mo-

ilizing gradient of 1.14	105 N/m3 is �29 m/s, giving the ratio of
900. For the case in which rmax = 10−3 m and rmin = 5	10−4 m, the
ontact-line velocity is obtained from the travel distance of �0.09 L
nd the traveltime of �2 s �the inverse of the last column of Table 3�,
o be 5	10−4 m/s, and the Poiseuille velocity for the mobilizing
radient of 1.12	104 N/m3 is �3 m/s. The velocity ratio is, there-
ore, about 6000. Clearly, the viscosity is not a major restricting fac-
or to the motion, compared to the capillary force, which justifies the
pproximation used in deriving equations 6–8.

CONCLUSIONS AND INFERENCES
FOR SEISMIC STIMULATION

This analysis shows that, generally, the accelerations that seismic
ources need to develop to overcome the capillary barrier in realistic
ore structures are on the order of at least several m/s2 or even much
igher. We have already observed that realistic borehole sources pro-
uce the accelerations about 0.1 m/s2 measured at the distances of a
ew hundred meters; this may be insufficient to stimulate significant
olumes of the reservoirs. Much larger accelerations can be created,
owever, by surface shakers that can be used to stimulate the move-
ent of entrapped fluids in the shallow environment, arising, for ex-

mple, from groundwater contamination by organic pollutants.
On the other hand, this necessary acceleration level can also be ex-

remely low, depending on how close a particular ganglion resides to
ts mobilization threshold; in other words, how wide is the gap be-
ween ��Ps� and ��P0� in our previous discussion. Ganglia entrapped
ery near their unplugging thresholds �having narrow gaps� may
nly need a slight extra push to become liberated; such forcing may
e provided even by ambient vibrations. In a natural porous medium,
he thresholds will be highly variable, depending on a particular
ore’s geometry, the wetting angle, and the surface tension between
he phases. Owing to a vastly irregular character of the reservoir po-
ous space, these thresholds are hardly predictable. Therefore, it
ould be a nonfeasible task to forecast the volume of oil released by

he application of vibrations of a particular amplitude and frequency
n a natural rock, not because the process is poorly understood �for
ny particular geometry, the effect can be calculated� but because the
haracter of the porous space is unknown. This task would only be
ossible if some average characteristics of pore openings and
hroats, as well as the contact angles, are firmly established. The
oughness of pore walls contributes to the uncertainty.

It is clear, though, that vibrations of any amplitude and frequency
ill always produce a certain mobilization effect, as they will unplug

he ganglia for which the mobilization conditions are satisfied, leav-
ng others intact.As our examples show, there will always be a subset
f ganglia in the entrapped population that lie close enough to the un-
lugging threshold to be liberated by any vibration, however small
he amplitude. Experiments in deep and shallow natural environ-

ents are needed in addition to this theory to establish the payoff of
sing elastic waves and vibrations as a tool for enhanced petroleum
ecovery.
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APPENDIX A

REPRESENTATION OF THE
VIBRATION-INDUCED BODY FORCE

In a channel experiencing a vibration of the wall, the inertial body
orce acting on the fluid is obtained by rewriting the equation of mo-
ion of the fluid in the frame of reference of the wall. For the fluid ve-
ocity V and the wall moving along the z-axis with the velocity v�t�,
he axial and radial components of the fluid velocity v1 relative to the
all are v1z = Vz − v�t� and v1r = Vr. The incompressible Navier-
tokes equation is

� f
�V

�t
+ � f�V� �V = − �P + ��2V , �A-1�

here � is the fluid viscosity and �2 is the Laplacian �e.g., Landau
nd Lifshitz, 1975, equation 15.7�.

The axial component of equation A-1 is

� f
�Vz

�t
+ � f�Vr

�Vz

�r
+ Vz

�Vz

�z
�

= −
�P

�z
+ ��1

r

�

�r
�r

�Vz

�r
� +

�2Vz

�z2 � �A-2�

Landau and Lifshitz, 1975, equations 15.16�, where the axial sym-
etry �velocity independence of the azimuthal angle� has been taken

nto account. Substituting Vz = v1z + v�t� and Vr = v1r into equation
-2, we obtain

�
�

	v + v�t�
 + � 
v
�

	v + v�t�
 + 	v + v�t�

f �t 1z f 1r�r 1z 1z
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�

�z
	v1z + v�t�
�

= −
�P

�z
+ �
1

r

�

�r

r

�

�r
	v1z + v�t�
�

+
�2

�z2 	v1z + v�t�
� , �A-3�

hich considering that v�t� is independent of r and z, and that a�t�
�v�t�/�t, simplifies to

� f
�v1z

�t
+ � f�v1r

�v1z

�r
+ v1z

�v1z

�z
�

= −
�P

�z
+ ��1

r

�

�r
�r

�v1z

�r
� +

�2v1z

�z2 �
− � f�a�t� + v�t�

�v1z

�z
� . �A-4�

e now notice that equation A-4 is the same as equation A-2 with
he only difference in the appearance of the additional body-force
erm

Sz � − � f�a�t� + v�t�
�v1z

�z
� �A-5�

in its right-hand side� that is responsible for the effect of the vibrat-
ng wall. This means that a switch to the frame of reference of the

oving wall is equivalent to the addition of an inertial body force
ith the axial component Sz.
Similarly, substituting Vz = v1z + v�t�, and Vr = v1r into the radial

omponent of equation A-1 �Landau and Lifshitz, 1975, equations
5.16� leads us to the equation for v1r, from which the radial compo-
ent of the external body force is

Sr � − � fv�t�
�v1r

�z
. �A-6�

As seen from equations A-5 and A-6, the additional source terms
cting on the fluid reduce to approximately Sz = −� fa�t� if the
-derivatives of the fluid velocity vanish. For the fluid in a sinusoi-
ally constricted channel, these derivatives are of approximately the
ame absolute value but opposite sign on the two sides of the con-
triction; thus, they will approximately cancel each other in the total

igure B-1. Geometry of the spherical caps.
ody forces Sz and Sr acting on the fluid. This justifies using the rep-
esentation −�oa�t� for the oscillatory body force in our model.

APPENDIX B

CALCULATION OF THE CENTER
OF MASS OF THE GANGLION

The coordinate of the center of mass of the ganglion zc is

zc =
1

Vg
� �

Vg

� zrdrdzd
 , �B-1�

here Vg is the ganglion’s volume,

Vg = � �
Vg

� rdrdzd
 �B-2�

e.g., Harris and Stocker, 1998, p. 583�.
The volume integrals B-1 and B-2 can be conveniently calculated

n three steps: over the body of the ganglion limited by the vertical
lanes containing the contact lines z1 = const and z2 = const �Inte-
ral I�, over the right spherical cap �Integral II�, and over the left
pherical cap �Integral III� �Figure 2�. Integral I for equation B-1 be-
omes I�B-1� ��z1

z2�0
r�z��0

2�zrdzdrd
, which, taking equation 3 into ac-
ount and after straightforward but tedious manipulations, evaluates
o

I�B-1� = �rmax
2 �

z2
2 − z1

2

2

rmin

rmax
�1 +

3

8

rmin

rmax
�1 −

rmax

rmin
�2�

+
1

2

L

�
� rmin

2

rmax
2 − 1�� L

�
�cos �

z2

L
− cos �

z1

L
�+ �z2 sin �

z2

L
− z1 sin �

z1

L
��

+
1

16

L

�
� rmin

rmax
− 1�2�1

2

L

�
�cos 2�

z2

L
− cos 2�

z1

L
�+ �z2 sin 2�

z2

L
− z1 sin 2�

z1

L
�� � .

�B-3�
To calculate Integral II for equation B-1, the equation of the spher-

cal cap should be written. This can be done with the help of Figure
-1, where O� stands for the center of the sphere, of which the right
eniscus is the spherical segment to the right of the contact line, and

an � = r��z2�. The same equation will hold for the left meniscus,
ith the difference that the latter will constitute the spherical seg-
ent to the left of the contact line, with z2 replaced with z1.
From Figure B-1 and equation 4, the equation of the sphere is

�2 + r2 = Rm
2 �z2� = r2�z2�	1 + r�2�z2�
, where the axial coordinate

� is counted from the sphere center O’. Considering that z� = z
z2 − BO� and BO� = r�z2�r��z2�, the sphere’s equation becomes r
�r2�z2�	1 + r�2�z2�
 − 	z − z2 − r�z2�r��z2�
2. The right meniscus

s the segment of the sphere limited by z changing from z2 to zR�z2

BC=z2 + BO� + Rm�z2� = z2 + r�z2�	r��z2� + �1 + r�2�z2�
 �Fig-
re B-1�, where zR is the right �upper� limit corresponding to point C.
he integral over the right spherical cap becomes II�B-1� =

��z2

zR�0

�r2�z2�	1+r�2�z2�
−	z − z2 − r�z2�r��z2�
2

zrdzdr, which, after intermedi-
te manipulations, equates to
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II�B-1� =
�

2
�r2�z2�	1 + r�2�z2�


− 	z2 + r�z2�r��z2�
2��zR
2 − z2

2�

+
2�

3
	z2 + r�z2�r��z2�
�zR

3 − z2
3� −

�

4
�zR

4 − z2
4� ,

�B-4�

here r�z2� is again defined by equation 3.
Similarly, the left meniscus is the segment of the sphere limited by
changing from zL �z1 − AB = z1 − 	Rm�z1� − BO�
 = z1 − r�z1�
	−r��z1� + �1 + r�2�z1�
 to z1 �Figure B-1, where z2 has been re-

laced with z1�, where zL is the left �lower� limit corresponding to
oint A. The integral over the left spherical cap thus is III�B-1�

2��zL

z1�0

�r2�z1�	1+r�2�z1�
−	z − z1 − r�z1�r��z1�
2

zrdzdr, evaluating to

III�B-1� =
�

2
�r2�z1�	1 + r�2�z1�


− 	z1 + r�z1�r��z1�
2��z1
2 − zL

2�

+
2�

3
	z1 + r�z1�r��z1�
�z1

3 − zL
3�

−
�

4
�z1

4 − zL
4� . �B-5�

The volume integral in equation B-1 is the sum of I�B-1� + II�B-1�

III�B-1� �equations B-3–B-5�.
The calculation of the volume of the blob B-2 is performed in ex-

ctly the same manner as the sum of the integrals over the oil body
etween z1 and z2 �Integral I� and over the right and the left spherical
aps �Integrals II and III, respectively�. The integration gives

I�B-2� = �rmax
2 �

rmin

rmax
�1 +

3

8

rmin

rmax
�1 −

rmax

rmin
�2��z2 − z1�

+
1

2

L

�
� rmin

2

rmax
2 − 1��sin �

z2

L
− sin �

z1

L
�

+
1

16

L

�
� rmin

rmax
− 1�2�sin 2�

z2

L
− sin 2�

z1

L
� � ,

�B-6�

II�B-2� = ��r2�z2�	1 + r�2�z2�


− 	z2 + r�z2�r��z2�
2��zR − z2�

+ �	z2 + r�z2�r��z2�
�zR
2 − z2

2�

−
�

3
�zR

3 − z2
3� , �B-7�

III�B-2� = ��r2�z1�	1 + r�2�z1�


− 	z1 + r�z1�r��z1�
2��z1 − zL�

+ �	z1 + r�z1�r��z1�
�z1
2 − zL

2�

−
�

3
�z1

3 − zL
3� . �B-8�
he ganglion’s total volume is Vg = I�B-2� + II�B-2� + III�B-2� �equa-
ions B-6–B-8�.

It is not difficult to check that, in the limiting case of a cylindrical
apillary �rmin = rmax�Rc, r��z� = 0
, the total volume reduces to the
orrect value of �Rc

2�z2 − z1 + 4
3Rc� and the center of mass zc, calcu-

ated using equations B-1–B-8, lies in the middle of the blob, zc

�z1 + z2�/2, as it should.

APPENDIX C

VARIABILITY IN THE LENGTH
AND COORDINATE OF THE

CENTER-OF-MASS OF THE GANGLION

To get insight into how variations in the length of the ganglion, as
t moves toward the neck of the constriction, affect the results ob-
ained in the constant-length approximation, we chose the worst-
cenario case of the largest capillary threshold and with the ganglion
way from the constriction, that is, corresponding to rmax = 10−4 m,
min = 10−5 m, Case 2.

To illustrate the full range of variability, the ganglion’s volume is
hosen in such a way that l/L = �z2 − z1�/L = 0.6 is exactly at z1/L
−1 �Figure 2�; this volume was calculated from equations
-6–B-8 for the given z1 and z2, Vg = 1.2244	10−10 m3. Then, for a

eries of the left-contact-line positions z1/L and this constant vol-
me, the coordinate z2/L was calculated as the root of the algebraic
quation Vg�z1,z2� = 1.2244	10−10 m3; l then is simply z2 − z1. The
esulting dependence of the ganglion’s length on z1/L is depicted in
igure C-1.
It can be seen �considering the initial length of the ganglion l/L
0.6� that the length rises quickly as the blob enters the constriction

the beginning part of the plot in Figure C-1�. The implications for
ur simulation is that the ganglion, whose initial configuration is
1/L = −0.8070 �Table 1, second row�, will quickly increase in
ength to l/L�0.8 and become mobilized. Its actual length between
he start of the motion and the mobilization moment will be between
.6 L and 0.8 L. Thus, one should see how this increase in the effec-
ive length will affect the conclusions of the analysis.

The maximum capillary-pressure difference across the length of
he ganglion for l = 0.8 L is �7125 Pa, from which the unplugging-
hreshold body force is 7125 Pa/�0.8	10−2 m��0.891	106

/m3. The predicted mobilizing acceleration for the static gradient
f 0.55	106 N/m3 is then �341 m/s2 �cf. 591 m/s2 for l = 0.6 L,
able 1�. For the new length, the frequency of breakdown in the stat-

c criterion decreases to �30 Hz �cf. 200 Hz for l = 0.6 L�. The real-
stic values of these quantities for a ganglion with variable length can
hus be expected to lie somewhere between these extremes.

igure C-1. Ganglion’s length as a function of the position of the left
ontact line in the pore. rmax = 10−4 m, rmin = 10−5 m, Vg = 1.2244
10−10 m3.



a
t
t
z
p
F
l
c
u
c
i
i
L

A

B

B

B

G

H

H

I

J
L

L

M

N

P

R

R

R

T

W

F
=

N56 Beresnev
We now estimate how the assumption of the fixed center-of-mass
ffects the results. To that end, we calculate the difference between
he assumed fixed position of the center-of-mass and its actual posi-
ion zc�z1,z2� calculated from equations B-1–B-8: �zc ��z1 +
2�/2 − zc�z1,z2�. The calculation is performed for the same z1, z2

airs that were used to construct Figure C-1. The result is depicted in
igure C-2 as a function of the left-contact-line position z1/L. The

eftmost positive part of the curve is of interest to this analysis, be-
ause it corresponds to the ganglion still to the left of the constriction
ntil it is liberated ��zc/L�0: the real center-of-mass is behind be-
ause it is shifted to the left by the thick body of the ganglion occupy-
ng the open part of the pore�. An average uncertainty of about 0.2 L
n the location of the ganglion is expected, amounting to about 0.2
/0.6L�30% of the blob’s length.
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