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Analysis of core-annular dynamics in the presence of base flow for arbitrary fluid viscosities leads
to an equation describing the temporal evolution of the fluid/fluid interface. The equation follows
from the conservation of mass in the “small-slope” approximation. Its useful applications occur, for
example, in chemical engineering and petroleum recovery. The nonlinear equation allows
inexpensive numerical analysis. For sinusoidally constricted pores, a purely geometric criterion
exists that enables or prohibits the core-fluid breakup in the necks of the constrictions. The
geometrically favoring condition sets up capillary-pressure gradients that ensure a continuous
outflow of the core fluid from the necks into the “crests” of the profile. Such behavior is indeed
observed in the numerical solutions of the evolution equation. For relatively large slopes of the
initial configuration, setting up larger pressure gradients, the interface shape remains “smooth,” the
evolution times are relatively fast, and the breakup is typically achieved by the growing film-fluid
collar touching the axis of the channel at a single point. No satellite droplets are produced.
Decreasing the slope lengthens the evolution times, allowing the formation and growth of “wavy”
disturbances on the initial interface profile, which may touch the axis of the capillary in several
places forming satellite drops. Thinner initial annuli also slow down the evolution process.
Instability develops for the cases of the core both more and less viscous than the film. Finally, if the
geometry prohibits the snap-off altogether, the initial interface configurations decay into steady-state
solutions, and no breakup takes place. The solutions of the evolution equation validate well against
two computational-fluid-dynamics codes. © 2010 American Institute of Physics.
�doi:10.1063/1.3294887�

I. INTRODUCTION

Evolution equations have been often used to describe the
temporal dynamics of free fluid/fluid interfaces, e.g., Refs. 1
�Sec. 60, problem 4� and 2–5. The advantage of this ap-
proach is that it reduces the hydrodynamic problem to a
single partial-differential equation that is much easier to
solve numerically than the original full system of equations
of two-phase fluid dynamics, e.g., Refs. 6 and 7.

Hammond3 derived a nonlinear evolution equation for
the thickness of a thin film of a wetting fluid adsorbed on the
wall of a cylindrical capillary. The equation was based on the
assumption of an inviscid, nonwetting core filling the middle
of the channel, within which constant zero pressure was pos-
tulated �Ref. 3, Eqs. �3.3�–�3.7��. This assumption allowed
the introduction of scaled variables �Ref. 3, Eqs. �3.12�–
�3.15�� that made the approximations leading to the evolution
equation possible. The analysis was strictly applicable to an
inviscid core only.

Gauglitz and Radke4 subsequently showed that
Hammond’s3 thin-film approximation suffered from inaccu-
rate representation of the fluid/fluid interfacial curvature,
which led to incorrect prediction of the interface dynamics;
they proposed an extended, more accurate evolution equa-

tion, which was called the small-slope one. The analysis still
dealt with a straight cylindrical channel. Gauglitz and
Radke,5 however, generalized this approach to the case of a
sinusoidally constricted capillary tube. The generalized
small-slope equation was applied to the description of a
breakup of gas bubbles surrounded by water: the evolution of
the wetting film was followed until the latter formed bridges
�collars� across the tube. Constant zero pressure in the inter-
nal �gas� phase was again postulated �Ref. 5, p. 39�.

One can see that previous work has dealt with the evo-
lution equations for the thickness of wetting films inside cap-
illaries in the presence of zero-pressure, inviscid internal
phase. What made both Hammond and Gauglitz and Radke’s
derivations possible was the latter assumption, which al-
lowed the use of explicit expressions for the absolute pres-
sure in the film based on the interface curvature �Ref. 3, Eqs.
�3.3� and �3.4�; Ref. 4, Eqs. �6� and �7�; and Ref. 5, Eqs.
�13�, �17�, and �18��. The pressure field in the film was
thereby fully defined. If the core were viscous, this would
not be the case, as the assumption of constant pressure in the
core would no longer be valid, and Laplace’s law would only
provide a relative pressure difference between the two fluids.
The absolute pressure in neither phase would be known, pre-
venting the development of an evolution equation. This dif-
ficulty was not overcome in the studies by Papageorgiou
et al.,8 Kerchman,9 and Wei and Rumschitzki,10,11 who vir-
tually repeated Hammond’s analysis using the same assump-
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tions and the same scaling scheme. As Hammond’s model,
neither predicted the formation of bridges as well. In general,
the inherent inability of the perturbation analyses, based on
the thin-film approximation, to predict the formation of liq-
uid bridges,3,8–11 limits their practical usefulness and is a
significant shortcoming. On the other hand, the small-slope
approximation, applied to a spontaneous breakup, not only
captures the formation of bridges but, for the case of gas
bubbles in capillaries, leads to excellent agreement with the
experiment.5

No theory therefore still exists that would describe the
evolution of an interface for the case of arbitrary viscosities
and thicknesses of the fluids in the wetting annulus and the
core. Our goal is to develop and analyze such an evolution
equation, in the small-slope approximation and the presence
of base flow, identifying the conditions under which the core
fluid filling corrugated channels can break up into isolated
drops. Problems of this type occur, for example, in chemical
engineering and petroleum recovery. Keeping in mind this
practical relevance, we will identify the capillary tube with a
“pore.”

Applications to pore geometries will allow us to neglect
gravity effects. The ratio of gravitational to capillary forces
is controlled by the Bond number, Bo=��gd2 /�, where ��
is the density difference between the film and core fluids, g is
the acceleration of gravity, d is the characteristic pore diam-
eter, and � is the interfacial tension. Even for the typical
maximum pore diameters of 100 �m and maximum density
differences of �1000 kg /m3, assuming a characteristic sur-
face tension of 0.040 N/m, we obtain Bo�10−3, which illus-
trates the dominance of capillary effects. The same conclu-
sion was reached by Hammond �Ref. 3, p. 364�.

Our analysis will also assume the smallness of capillary
numbers or the dominance of capillary forces over viscous
ones. Such an assumption, for example, is well justified in
oil-recovery operations, which are characterized by capillary
numbers on the order of 10−6–10−8, e.g., Ref. 12 �p. 58�.

II. THE EVOLUTION EQUATION OF THE FLUID/FLUID
INTERFACE

The geometry of the problem is illustrated in Fig. 1,
where an axisymmetric pore channel with sinusoidal profile
is depicted in the cylindrical coordinate system with a fluid/
fluid interface inside. The indices “1” and “2” will designate
the variables in the core fluid and the wetting annulus, re-
spectively. Following Gauglitz and Radke �Ref. 5, p. 16� and

keeping the same notation, we introduce the problem vari-
ables and nondimensionalize them as follows:

r = r�/RT
�, x = x�/RT

�, � = t�/��1
�RT

�/��� ,

�1�
p = p�/���/RT

��, Q = Q�/���RT
�2/�1

�� .

Here r� and x� are the radial and axial coordinates, respec-
tively, t� is the time, p� is the pressure, Q� is the volumetric
flow rate, RT

� is the maximum radius of the tube, and �1
� is

the core dynamic viscosity. The “asterisks” will always indi-
cate the dimensional variables, and their “nonasterisked”
counterparts will be the nondimensional ones.

The shape of the pore wall is represented by a sinusoidal
function

r�wall � ��x� = 1 − a�1 + cos 2�
x

2/�	 , �2�

which has the wavelength of L�2 /�; the parameters a and
� conveniently characterize the minimum radius of the
pore �1–2a� �the radius at the neck of the constriction�
and the slope of the wall, respectively. The slope parameter �
has a simple geometric meaning: it is the ratio of the maxi-
mum radius of the channel to half of its wavelength,
�=RT

� / �L� /2�. The dimensionless function �2�, labeled the
“wall,” is plotted in Fig. 1.

The radial position of the fluid/fluid interface is repre-
sented by the dimensionless r �interface�	�x�. From Laplace’s
law,

pc
� � p1

� − p2
� = ��K�, �3�

where K� is the mean curvature of the fluid surface 	�x�� and
pc

� is the “capillary pressure.” The assumption of small cap-
illary numbers allows us to neglect the contribution of vis-
cous stresses to the boundary condition �3�, e.g., Ref. 13 �p.
59�. As seen from Eq. �3�, the determination of pressures
requires an expression for the curvature of an axisymmetric
surface in cylindrical coordinates. Such an expression is
given, for example, by Atherton and Homsy �Ref. 2, p. 76� or
De Gennes et al. �Ref. 14, Eq. �1.14�� and also was derived
by Beresnev et al.15 from the general equations of differen-
tial geometry. In dimensionless form, the exact equation �3�
for the pressure difference across the interface becomes 
cf.
the capillary-pressure term in Ref. 5 �Eq. �B5�� given without
derivation�

p1 − p2 =
1

	�1 + � �	

�x
	2
1/2 −

�2	

�x2

�1 + � �	

�x
	2
3/2 . �4�

The sign of the second term in Eq. �4� has been chosen
to correctly represent an increase in the capillary pressure
under the “convex” part of the interface. Indeed, under the
“crest” of the sinusoidal profile �having the maximum radius
of 1 in Fig. 1�, the two mutually orthogonal normal cross
sections of the interface �one in the plane of Fig. 1 and one
perpendicular to it� are convex; both terms in the right-hand
side of Eq. �4� must then be positive. The first term is always
positive. To check if the sign of the second term is correct,

FIG. 1. Geometry of the problem.
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we take, for example, an interface that follows the shape of
the wall �Eq. �2��. The second derivative of Eq. �2� is
�2�2a cos 2��x /2 /��, which is negative at the crest �e.g.,
x=1 /��. This provides the correct positive sign of the second
term in Eq. �4�.

The evolution equation is derived as the mathematical
expression of the conservation of mass. The volume of the
core segment with radius RT

�	 and length dx� is
��RT

�	�2dx�, and the rate of the volume change is
2�RT

�2	��	 /�t��dx�. Conservation of mass relates this rate
of change to the differential of the volume flux in the core
dQ1

� as ��Q1
� /�x��dx�=−2�RT

�2	��	 /�t��dx�. Nondimen-
sionalizing according to Eq. �1� yields

�	

��
= −

1

2�	

�Q1

�x
. �5�

To close the equation, one needs to explicitly express the
volume flux in the core Q1 through the interface position 	.
With the small-slope assumption, such as by Gauglitz and
Radke,4,5 the fluid flow in the core and the annulus can lo-
cally be approximated as Poiseuille flow. In adopting this
approximation, we therefore assume the smallness of the
Reynolds number �Re�. The exact axisymmetric solution of
the stationary Navier–Stokes equation is known, which,
when applied to the core-annular geometry, results in an ana-
lytical expression for the steady-state Poiseuillean flow in the
core and the annulus �Ref. 13, Sec. 2-1�. However, this so-
lution assumes an equal pressure gradient in both fluid
phases. Since, by nature of our problem, we are interested in
the capillary flow to which Laplace’s law applies, the local
pressure gradients in the core and the annulus will generally
be different. We therefore need to rederive the core-annular
Poiseuillean flow for the general case of nonequal pressure
gradients in the two fluids.

Let local pressure gradients be p1x�
� ��p1

� /�x� and
p2x�

� ��p2
� /�x�. Developing the solution of the Navier–Stokes

equation for the cylindrical core-annular geometry for the
case of p1x�

� nonequal to p2x�
� leads to the expressions for the

axial velocities u1
� and u2

�,

u1
��r�� =

p1x�
�

4�1
� �r�2 − R1

�2� +
p2x�

�

4�2
� �R1

�2 − R2
�2�

+
R1

�2

2�2
� �p1x�

� − p2x�
� �ln

R1
�

R2
� , �6a�

u2
��r�� =

p2x�
�

4�2
� �r�2 − R2

�2� +
R1

�2

2�2
� �p1x�

� − p2x�
� �ln

r�

R2
� , �6b�

where R1
� and R2

� are the radius of the core and the external
radius of the tube, respectively. It is easy to check that these
expressions reduce to the known velocities for equal gradi-
ents p1x�

� = p2x�
� �Ref. 13, Eqs. �2-1.9� and �2-1.10��. Integra-

tion of the velocity profiles �6� gives the respective volume
fluxes in the core and the annulus,

Q1
� = 2��

0

R1
�

u1
�r�dr�

=
�

2
R1

�2�−
p1x�

�

4�1
�R1

�2 +
p2x�

�

2�2
� �R1

�2 − R2
�2�

+
R1

�2

�2
� ln

R1
�

R2
� �p1x�

� − p2x�
� �
 , �7a�

Q2
� = 2��

R1
�

R2
�

u2
�r�dr�

= −
�p2x�

�

8�2
� �R1

�2 − R2
�2�2

−
�R1

�2R2
�2

2�2
� �p1x�

� − p2x�
� ��1

2
+

R1
�2

R2
�2 ln

R1
�

�eR2
�	 , �7b�

where e is the base of the natural logarithm.
After nondimensionalization, expression �7a� for Q1 can

be substituted into Eq. �5�. However, the pressure gradients
p1x and p2x will still be undetermined and need to be ex-
pressed through the interface position 	 to close the evolu-
tion equation. This is achieved as follows.

Laplace’s law �4� relates p1 and p2. The small-slope ap-
proximation allows us to neglect the derivative terms in the
brackets in Eq. �4�, i.e., �	 /�x
1. Since these terms are
squared, the approximation should remain reasonable even if
the condition is relaxed to �	 /�x�1. If the core initially
follows the shape of the wall, by taking the derivative of Eq.
�2� this condition can be seen to be equivalent to ��1. We
will use the latter as the condition for the small-slope ap-
proximation. It, of course, has a transparent geometric mean-
ing, RT

��L� /2.
The small-slope approximation is the better the smaller

the parameter � is. As long as it remains valid, the locally
Poiseuillean approximations for the flow in both the core and
the annulus �Q1 and Q2, respectively�, which fully take vis-
cosities into account, remain applicable too. The limits of
validity of this analysis can only be verified through an ex-
periment or computational fluid dynamics �CFD�; we take
the latter approach in the final section of the paper.

Equation �4� for the pressure difference across the inter-
face then simplifies to

p1 − p2 =
1

	
−

�2	

�x2 , �8�

or, by differentiating,

p1x = p2x −
1

	2

�	

�x
−

�3	

�x3 . �9�

Continuity requires that

Q1 + Q2 = Q , �10�

where Q is the constant total volumetric flow rate in the tube.
Equations �9� and �10�, with Eq. �7� in mind, represent a
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system of two algebraic equations with two unknowns p1x

and p2x. Solving for them and substituting the solution for
p1x into the nondimensionalized Q1 in Eq. �7a�, and then
using the result in Eq. �5�, closes the evolution equation de-

fining the radial position of the interface, which includes the
effect of the imposed base flow with constant rate Q and
arbitrary viscosities of the fluids. With the intervening alge-
bra omitted, the equation is

�	

��
= −

1

2�

�2

�1

Q

	

�

�x�1 +
2�1

�2
��2

	2 − 1	
�4

	4 +
�2

�1
− 1 � +

1

4	

�

�x�	2� �	

�x
+ 	2�3	

�x3	��
�2

	2 − 1	���1

�2
−

1

4
	�2

	2 +
3

4
−

�1

�2



�4

	4 +
�2

�1
− 1

−
�1

�2
ln

�

	�� .

�11�

Note that Kouris and Tsamopoulos16 performed a
computational-fluid-dynamics study of the interface dynam-
ics in a core-annular flow of two viscous fluids in a channel
with sinusoidal cross section. The interface evolution has not
led to the breakup or the formation of satellite droplets. As
for Hammond’s3 study, this lack of the formation of bridges
can be traced back to an insufficient approximation of the
interfacial curvature. The undervaluation of the second-
derivative term in the Kouris and Tsamopoulos analysis can
be ascertained by comparing the curvature term in Eq. �15�
in their paper with Eq. �8� above. As a result, both the fluid
snap-off and the production of satellite droplets naturally ap-
pear in our analysis. In a follow-up numerical study, Kouris
and Tsamopoulos7 removed the restrictions on representing
the interfacial curvature, which led to their documenting a
complete core-fluid breakup as well.

Equation �11� is a nonlinear evolution equation of fourth
order describing the dynamics of the free interface. Its solu-
tions will be investigated numerically in Sec. III. For valida-
tion and comparison, we will also present the computational-
fluid-dynamics simulations of the same scenarios.

III. INTERFACE DYNAMICS AS THE SOLUTION
OF THE EVOLUTION EQUATION

A. The linear stability analysis

We start with a linear stability analysis of Eq. �11�.
Representing the initial interface configuration as 	=	0

�1+�e
�+ikx�, where �
1, and linearizing �setting
1 /	�1 /	0, 	2�	0

2, 	4�	0
4, and �=1�, we obtain, upon

substitution into Eq. �11�,


 =
	0k2

4
�	0

2k2 − 1�

���
1

	0
2 − 1	���1

�2
−

1

4
	 1

	0
2 +

3

4
−

�1

�2



1

	0
4 +

�2

�1
− 1

+
�1

�2
ln 	0� .

�12�

Taking the derivative 
��k� and equating it to zero, we find

that 
 takes the maximum positive value at the wave number
kmax=1 / ��2	0�. Since k=2� / l, where l is the wavelength of
the surface disturbance, the wavelength lmax, corresponding
to kmax, becomes 23/2�	0. We thus recover the result of
Hammond’s linear stability analysis for the fastest-growing
wavelength for all realistic core viscosities �Ref. 3, Eqs.
�2.23� and �2.24� and p. 369�. Consistency with Hammond’s
result is understood from the fact that he also used the Stokes
�small-Reynolds-number� approximation, albeit without an
imposed flow.

Also, it can be directly verified that the expression in the
curly braces in Eq. �12� is always negative. The condition for

 to stay positive �the condition for the disturbance to grow�
is consequently 	0

2k2�1 or l�2�	0. This recovers the ex-
pression for the wavelengths of surface disturbances that
cause the Plateau–Rayleigh instability �disintegration� of a
liquid cylinder of radius 	0 �Ref. 14, Eq. �5.22��.

The linear stability analysis therefore verifies that our
evolution equation correctly reduces to known asymptotic
cases.

B. Geometric condition for core-fluid breakup

A purely geometric condition exists for the core fluid’s
snap-off in the necks of the constrictions.15 This condition
can be derived exactly for the case of pure surface-tension-
driven flow �no base flow�. Consider capillary pressures in
the neck pc

neck and the crest pc
crest of the profile, which, from

Eq. �3�, are controlled by the geometry only. Let us conjec-
ture that the breakup of the core fluid is governed by the
geometric condition pc

neck� pc
crest. For the surface-tension-

driven flow, only three combinations, relating the pressures
in the annulus and core fluids in the crests and the necks, can
physically exist,

p1
neck � p1

crest

p2
neck � p2

crest , �13a�

p1
neck = p1

crest

p2
neck = p2

crest , �13b�
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p1
neck � p1

crest

p2
neck � p2

crest . �13c�

Equation �13� simply asserts the conservation of mass: e.g.,
if there is an inflow of the core fluid into the neck, there must
be a respective outflow of the film fluid from the neck �Eq.
�13a��, and so forth. Subtracting the second inequality from
the first in Eq. �13a� keeps the � sign true, so we obtain,
from the definition in Eq. �3�, pc

neck� pc
crest, which contradicts

the initial conjecture. Repeating the process for the equalities
in Eq. �13b� again leads to a contradiction. The only combi-
nation compatible with the initial conjecture pc

neck� pc
crest is

Eq. �13c�; however, the latter implies the outflow of the
core phase from the necks into the crests �p1

neck� p1
crest� ac-

companied by the invasion of the film fluid into the neck
p2

neck� p2
crest with a formation of a bridge across the tube. We

have thus proved that the geometric condition pc
neck� pc

crest is
the condition for the initiation of the breakup process that
may lead to the pinch-off of the core.

This condition can be formulated explicitly. Suppose, for
simplicity, that the initial interface follows the shape of the
wall, 	�x�=��x�−b, where b is a constant. Then, from Eqs.
�2� and �4�, capillary pressure pc at the crests of the interface
profile is pc

crest=1 /Rmax+�2�2a, and the pressure at the
“troughs” �the necks of the constrictions� is pc

neck=1 /Rmin

−�2�2a, where Rmin=1–2a−b and Rmax=1−b are the mini-
mum and the maximum radii of the interface profile. The
pinch-off condition pc

neck� pc
crest is then reformulated as

� �
1

��RminRmax

. �14�

Condition �14� was first deduced by Beresnev et al. �Ref. 15,
Eq. �6�� based on more general qualitative reasoning that did
not preclude the presence of base flow. A review of published
numerical and experimental observations of core-phase
breakup in sinusoidal channels supported the validity of this
purely geometric criterion. It is also worthwhile noting that
all tube geometries used in the computational-fluid-dynamics
simulation by Kouris and Tsamopoulos7 satisfied geometric
condition �14� as well.

Note that this “static” criterion does not take the dynam-
ics of the interface into account and strictly applies to the
initiation of the breakup only. However, when the core fluid
starts flowing out of the neck, with the interface there mov-
ing toward the axis of the pore, the radius Rmin progressively
tends to zero, while Rmax remains by order of magnitude the
same. Condition �14�, therefore, if satisfied, can be expected
to be sufficient to complete the snap-off.15 We will verify this
observation from the numerical investigation of the evolution
equation.

Also note that in the limiting case of Rmin=Rmax=R, Eq.
�14� reduces to L�2�R, which again recovers the condition
for the Plateau–Rayleigh instability.

C. Numerical solution of the evolution equation
and validation against CFD

1. Algorithm descriptions

Equation �11� was solved numerically using the compu-
tational package MATHEMATICA

® to the precision of six deci-
mal digits. The adaptive “method of lines” is used to solve
the partial differential equation represented by Eq. �11�. To
advance the solution to the next time level, the spatial de-
rivatives �the right-hand side of Eq. �11�� are first calculated,
leading to a first-order ordinary differential equation in time
at every node of the spatial grid. The resulting N ordinary
differential equations �N is the number of nodes� are then
solved as an initial-value problem at every node to advance
the solution one step in time. The spatial derivatives are then
recalculated and the process is repeated.

The wall and the initial-interface configurations used in
the first example are shown in Fig. 1. To avoid artificial
reflections from the ends of the x-domain, the periodic
boundary condition was used: 	�� ,−L /2�=	�� ,L /2�. The
evolution of the fluid/fluid interface was computed until the
latter reached the centerline �axis� of the pore �r=0�. Since
the condition for the core fluid breakup appears to be con-
trolled by inequality �14�, cases were investigated in which
this inequality was and was not satisfied, keeping parameter
� small enough to remain within the limits of the small-slope
approximation.

We use a uniform film thickness as an initial configura-
tion. If the core phase were a gas bubble in a straight cylin-
drical tube, a steady-state film thickness would be a fraction
of the tube radius proportional to the positive power of the
capillary number.17 However, the initial condition in our
study should rather be representative of the sinusoidal geom-
etry, in which the local capillary number varies with the fluid
velocity, being greater where the channel’s radius is small
than where it is large. This dependence will tend to equalize
the film thickness along the sinusoidal pore. In the laboratory
experiments we currently conduct, we indeed observe that
the thickness of the wetting annulus, left behind by the inva-
sion of a viscous core fluid into a wetting-fluid-filled sinu-
soidal channel, is visually constant. For the absence of a
better model, we choose a uniform thickness as an appropri-
ate initial condition in the examples we provide.

Mimicking a typical oil-recovery application, assuming
a water viscosity of 0.001 Pa s and a typical oil viscosity of
0.01 Pa s �Ref. 18, Fig. A-2�, the ratio of �1 /�2 in all cases
except one �Fig. 7� was set to 10. In keeping with the same
application, we should obtain an upper bound on the flow
rate Q expected for a porous channel in an oil reservoir.
Assuming water as the reservoir’s most abundant phase, we
can obtain from Darcy’s law QD

� = �k�A� /�w
� �px�

� , where k� is
the permeability, �w

� is water viscosity, A� is the cross-
sectional area, and px�

� is the background pressure gradient.
To convert QD

� to an estimate of the velocity in a single
channel, we divide it by the fraction of the area occupied by
the pores, u�= �k� /��w

� �px�
� , where � is the porosity. For a

channel with a characteristic radius RT
�, the channel’s base-

flow rate is then calculated as Q�=�RT
�2u�. Nondimensional-

izing according to Eq. �1� leads to Q=�k��1
�px�

� /����w
� . The
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oil-field maximum pressure gradients are on the order of
106 Pa /m, and the high end of reservoir permeabilities is
10−11 m2 �Ref. 19, Table 5.5.1�. For the porosity of 0.25,
taking the ratio of oil-to-water viscosities of 10 and the sur-
face tension of 0.040 N/m results in Q=3�10−2. For a range
of scenarios, we will use this upper-bound estimate as the
value of Q in one example and will reduce it by a factor of
30 to Q=10−3 in another example. The respective capillary
numbers, Ca=�w

� u� /��= ��w
� /����Q� /�RT

�2�=Q�w
� /��1

�, be-
come 10−3 and 3�10−5.

The numerical solutions of the evolution equation are
validated using the commercial finite-volume computational-
fluid-dynamics code FLUENT. The simulations were run in
FLUENT’s volume of fluid �VOF� axisymmetric model for the
immiscible multiphase flow. The mesh-generation software
GAMBIT was used to construct the grid on which the axial
and radial momentum, continuity, and volume-fraction equa-
tions were solved. A triangular mesh was generated, because
we had found that simulations would be sensitive to the as-
pect ratio if a rectangular mesh was used. The following
solution schemes for the VOF model were applied: the pres-
sure staggering option for pressure interpolation, the second-
order discretization for the volume-fraction equation, the
pressure implicit with splitting of operators scheme for
pressure-velocity coupling, and the second-order upwind dis-
cretization for the momentum equations. The computational
domain comprised either four or six periods of the sinusoidal
channel with a body of the core fluid inserted in the suspend-
ing fluid �Fig. 2� to match the preset initial configuration in
the middle period of the channel �boxes in Fig. 2�. The con-
stant total flow rate was maintained. The middle period was
used for the comparison to the theoretical calculations. The
density and viscosity of the core fluid were 1000 kg /m3

and 0.01 Pa s, and those in the film were 1000 kg /m3 and
0.001 Pa s. The surface tension was set to 0.040 N/m. The
tube had the maximum and minimum radii of 25 and
15 �m, respectively; the initial film thicknesses were 7.5
and 3.75 �m for the geometries of the two examples in Figs.
1 and 8, respectively.

Grid-refinement studies were performed to ensure that
the computed profiles and times to breakup were grid inde-
pendent. The typical results, obtained for the FLUENT simu-
lations corresponding to Fig. 3�a�, are summarized in Table I.
Independence of the computed times to breakup has been

ensured through the second digit. The results that will be
presented are for the finest grid.

The advantage of using the evolution equation to calcu-
late the dynamics of the interface can be illustrated as fol-
lows. Most runs required no more than several minutes to
execute on a modern personal computer, while two-phase
computations for same geometries in FLUENT took approxi-
mately 1 day per scenario.

For further verification, the same simulations were per-
formed using another commercial CFD code COMSOL. It was
chosen because FLUENT and COMSOL were based on totally
different approaches to discretizing the governing equations
and tracking the position of the free interface, providing in-
dependent control. While FLUENT uses the finite-volume
method for the discretization and the volume-of-fluid method
for resolving a moving interface, COMSOL implements the
finite-element and the level-set methods, respectively.

a)

b)

FIG. 2. �Color online� �a� Four periods and �b� six periods of the computa-
tional domain for the CFD simulations.

a: α = 0.450

b: α = 0.225

c: α = 0.0695

τ = 9.0τ = 3.4

τ = 7.8 τ = 16

τ = 38 τ = 45

FIG. 3. �Color online� Temporal evolution of the initial interface profile
with Q=3�10−2 and increasing spatial periods of the sinusoidal wall.
�1 /�2=10. The results obtained through numerical integration of the evo-
lution equation are shown on the left, and FLUENT results are on the right.
The final dimensionless times are indicated under each plot. �a� The period
of the fastest-growing disturbance of the linear stability analysis, �=0.450,
�b� �=0.225, and �c� �=0.0695.

TABLE I. Grid-refinement studies: the geometry as in Fig. 3�a�.

Mesh1 Mesh2 Mesh3

8712 cells 35 674 cells 80 212 cells

Breakup time �s� 6.55�10−5 6.76�10−5 6.78�10−5
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2. Results

The typical cases are presented as follows. We start
with the first example with the initial interface configuration,
as shown in Fig. 1, and the “high” total flow rate of
Q=3�10−2. Figure 3 �left panels� shows the evolution of the
initial fluid/fluid interface obtained through the numerical in-
tegration of Eq. �11� for a number of channel wavelengths.
The temporal evolution is presented “toward” the viewer,
that is, the initial configuration is at the rear of the plot and
the profile just before the breakup is at the front. The flow is
from right to left. All the solutions of the evolution equation
shown were obtained with N=800, checks were made to
make sure that this was sufficient to obtain mesh indepen-
dence. Figure 3 �right panels� also exhibits the results com-
puted with FLUENT, showing the channel’s wall �the upper
line� and the interface profile just before the breakup �the
lower line�. The dimensionless times � corresponding to the
final configuration are indicated below each plot.

Evidently, the evolution equation can follow the change
in the interface shape until the latter touches the axis of the
channel �defining the “breakup” moment�, at which point the
interface becomes discontinuous, and the solution for 	 in
Eq. �11� loses meaning. The final configurations are shown
“just before the breakup,” meaning that further computation
encounters a precipitous interface collapse. Such a precipi-
tous terminal behavior of the computed solutions was also
documented by Gauglitz and Radke.5 For example, the final
profile exhibited in Fig. 3�c� �left�, shown at �=38, does not
seem to be touching the centerline yet. However, continuing
computations to just �=38.5 already encounter a singularity,
that is, a discontinuous interface and impossibility of obtain-
ing a numerical solution. To validate the time scale of the
evolution, the interface profiles obtained from the integration
of Eq. �11� are compared with CFD at approximately the
same spatial proximity to the axis of the channel, which in-
volves a certain �but not large, due to a precipitous character
of the late stages� degree of subjective judgment.

Figure 3�a� shows the evolution of the initial configura-
tion that has the wavelength of the fastest-growing distur-
bance determined from the linear stability analysis. The
wavelength is thus L=23/2�	0, or, keeping in mind that 	0 in
this case is 0.5, ��0.450. The evolution of the interface
proceeds in accordance with the pressure argument that led
to the formulation of criterion �14�. Driven by the excess
pressure in the neck, the core fluid migrates into the crests of
the channel and collects there, which leads to the eventual
core pinch-off.

We wish to follow the change in the pattern of temporal
evolution as the slope of the wall and the initial configuration
�the value of �� is reduced from that of the maximum insta-
bility predicted by the linear stability analysis. Figure 3�b�
presents the results for � decreased by a factor of 2,
�=0.225, for the same initial profile. Although the pattern of
the interface-shape evolution does not change dramatically,
the snap-off is now achieved in a time that is about twice as
great. This slower process is physically understood: the re-
duced slope means smaller gradients in capillary pressure,
which consequently leads to a slower outflow of the fluid

from the neck. For the relatively high values of � �Figs. 3�a�
and 3�b��, the final interface shape is smooth and touches the
centerline at one point; satellite drops are not produced.

Figure 3�c� illustrates the effects of further reduction in
the slope. For the initial interface configuration in Fig. 1,
Rmin in Eq. �14� is 0.3 and Rmax is 0.7. We now set � in
Eq. �14� to be one-tenth of its maximum value that, accord-
ing to the pressure calculation, can lead to the breakup:
�=0.1�1 /��RminRmax�=0.0695. Figure 3�c� shows that the
evolution of the interface is now even slower, and the
breakup is achieved through the formation of “dimples” at
the interface, which all develop from the originally “smooth”
initial condition. As a result, as seen from the solution of the
evolution equation �Fig. 3�c�, left panel�, the interface ap-
pears to touch the centerline at more than one point, forming
one satellite drop. This is confirmed by FLUENT simulations.
The drop is formed slightly downstream from the center of
the neck between the two deepest “valleys” in the interface
through which the film phase reaches the axis of the channel.
The formation of the “waviness” of the profile is indicative
of a nonlinear spatial-harmonic transformation due to the
nonlinear character of the governing equation; as a result, the
single wavelength of the initial configuration at time scales
corresponding to the snap-off is not preserved. The much
slower process seen in Fig. 3�c� lends itself for the develop-
ment of rich nonlinear dynamics.

Note a slight “jaggedness” in the final profile presented
in Fig. 3�c� �left�. For purely aesthetic reasons in construct-
ing a three-dimensional surface seen, only a limited number
of the “topography” lines can be used; for the presentation
purposes, this number has been kept at 70. Recall that the
actual number N of grid points along the x-axis on the pro-
files has always been N=800, that is, the necessary numeric
precision has been maintained.

The comparison of the interface shapes just before the
breakup between the numerical solution of the evolution
equation and the simulations by FLUENT �Fig. 3, left and
right panels, respectively� shows a close similarity. The
agreement in the total time to the breakup improves as the
channel slope �parameter �� decreases. If we denote this time
obtained from the evolution equation by �bee and that from
CFD modeling by �bCFD, the ratio �bee /�bCFD=0.4, 0.5, and
0.8 for the cases in Figs. 3�a�–3�c�, respectively. The pattern
of the diminishing mismatch is to be expected, as the preci-
sion of the evolution model expressed in Eq. �11� increases
with the decreasing slope. What comes as a surprise, though,
is that the evolution equation turns out to be quite precise
�relative to FLUENT� even for a relatively high � of 0.450
�Fig. 3�a��.

It is interesting to estimate the absolute times needed for
the full development of the core pinch-off. The dimension-
less time � is measured in units of the characteristic time
scale of the surface-tension-driven flow appearing in Eq. �1�,
equal to �1

�RT
� /��. For the oil viscosity of 0.01 Pa s, surface

tension of 0.040 N/m, and pore radius of 25 �m, we obtain
the time scale of approximately 6 �s. The longest � ob-
served in Fig. 3 is on the order of 40. The time to the breakup
is thus on the order of 0.2 ms, or the fluid snap-off in this
case happens instantly for the practical purposes.
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Figure 4 presents an example of comparison of interface
shapes obtained with two independent CFD codes, FLUENT

and COMSOL. COMSOL results are shown for the cases of Figs.
3�a� and 3�c� �right panels�. The agreement is satisfactory in
both the shapes of the interface and the times taken for the
core fluid to break up.

Finally, condition �14� prohibits the formation of the
breakup if the former is not satisfied, as then no pressure
gradients will exist in the initial configuration that could set
up the migration of the core fluid out of the neck. To verify if
this predicted behavior is observed in the solutions of the
evolution equation, we set � just slightly above the threshold
defined by Eq. �14�, �=1.05�1 /��RminRmax�=0.729. Figure
5 shows the temporal evolution of the initial profile in this
case. As expected from the pressure argument, there is no
continuous outflow of the core fluid from the constriction,
and the initial profile equilibrates into a steady-state surface.
The steady-state solutions are nearly identical in the evolu-
tion equation and FLUENT, and the geometric condition for
the occurrence of the snap-off proves to be valid.

We now reduce the flow rate to Q=10−3. Figure 6 re-
computes the case of the slower and dynamically more com-
plex evolution presented in Fig. 3�c� for this new value of Q.
The comparison in the shape of the interface between the
results of the integration of the evolution equation and those
of FLUENT is very close; the computed times to the breakup
are identical. If we compare Fig. 6 with Fig. 3�c�, the reduc-
tion in the flow rate by a factor of 30 has not significantly
affected the overall dynamics of the breakup process, except
creating minor differences in the interface shape. One satel-

lite drop is still shed, and it is closer to the center of the
constriction because of the slower flow.

Note that the linear stability treatment of the core-
annular flow in straight cylindrical channels has shown win-
dows of finite Reynolds numbers in which the Plateau–
Rayleigh instability is suppressed, in case of �1��2 �the
core more viscous than the film�.20 It is important to recog-
nize in the context of our study that at small Re, the flow is
unstable for long wavelengths �that is, satisfying the condi-
tion L�2�R for the Plateau–Rayleigh instability� for both
�1��2 �considered so far� and �1��2.20,21 To check the
consistency with the latter prediction, we resimulate the sce-
nario of Fig. 6 with the viscosity ratio reversed, that is
�1 /�2=0.1. The result is depicted in Fig. 7. The instability is
preserved with the same major features of the solution as in
Fig. 6, except that the breakup process has become much
slower due to a greatly increased viscosity of the film. There
is an excellent match in the final interface shapes between
the evolution model and FLUENT. The ratio of �bee /�bCFD is
0.8.

To illustrate the generic character of the inferences re-
garding the character of the evolution of the interface, we
consider a different initial annulus thickness equal to one-
half of that in Fig. 1. Figure 8 shows the new initial configu-
ration. We solve the evolution equation for the same scenario
as in Fig. 3�c�, one with the richer nonlinear dynamics,
which has the slope of one-tenth of the maximum value that
can lead to the breakup: �=0.1�1 /��RminRmax�=0.0515
�Rmin=0.45 and Rmax=0.85�. The temporal evolution for the
high Q of 3�10−2 is presented in Fig. 9. The evolution of
the interface proceeds similarly through the formation of
short-wave disturbances �dimples� before the snap-off; how-
ever, for this scenario, the satellite drop is not generated
�cf. Fig. 3�c��. The collar of the annulus fluid across the

COMSOL: τ = 11

FLUENT: τ = 9.0
a)

COMSOL: τ = 58

FLUENT: τ = 45
b)

FIG. 4. �Color online� Comparison of the interface shapes near breakup
computed with COMSOL and FLUENT. �a� The case of �=0.450, corresponding
to Fig. 3�a�; �b� the case of �=0.0695, corresponding to Fig. 3�c�.

α = 0.729

FIG. 5. �Color online� Evolution of the initial profile not satisfying the
geometric condition �14� for the formation of the breakup in the neck:
�=0.729. Q=3�10−2 and �1 /�2=10 as in Fig. 3.

α = 0.0695

τ = 40 τ = 40

FIG. 6. �Color online� Evolution of the initial profile with Q=10−3. All other
conditions are as in Fig. 3�c�.

α = 0.0695

τ = 728τ = 585

FIG. 7. �Color online� Evolution of the initial profile with �1 /�2=0.1. All
other conditions are as in Fig. 6.
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channel is produced through one deep and sharp “valley” in
the interface, clearly seen in both the evolution-equation and
FLUENT results �Fig. 9, left and right panels, respectively�.
Both the interface shapes and the times to breakup compare
very favorably ��bee /�bCFD=0.9� between the evolution equa-
tion and FLUENT. As one could expect, the process has be-
come much slower �the final times � are on the order of 400�
because the collar now has to develop through a thicker vis-
cous core.

IV. CONCLUSIONS

We have derived an evolution equation describing the
core-annular temporal dynamics for arbitrary fluid viscosities
in axisymmetric capillary channels with imposed base flow,
including the possibility of the core pinch-off.

In the case of the surface-tension-driven flow, for the
sinusoidal pores, a purely geometric condition �14� exists
that defines the exceedance of capillary pressure in the neck
of the constriction relative to the crest of the profile; it thus
ensures the outflow of the core fluid out of the neck toward
the crests of the initial configuration of the fluid/fluid inter-
face. Inequality �14� thus establishes the geometric condition
for the development of the fluid breakup.15 Numerical simu-
lations with both the evolution equation and CFD codes
demonstrate that this pattern, expected solely from the
capillary-pressure analysis, indeed takes place in the nonlin-
ear dynamics of the interface.

When condition �14� is satisfied, the curvature of the
profile is sufficient to set up pressure gradients that lead to
the snap-off in relatively short absolute times for the

examples considered. The following patterns emerge. When
the slopes of the channel wall and the interface are relatively
large, producing larger pressure gradients and shorter evolu-
tion times, the interface shapes tend to remain smooth and
collapse at single points on the channel axis. No satellite
droplets are produced. However, with the decreasing slopes
and rising evolution times, the waviness of the profiles is
developed from the initial configuration through a nonlinear
interaction of growing disturbances. The snap-off in such a
case tends to be achieved through growing dimples that may
touch the centerline at several points, forming satellite drops.
Instabilities develop for the cases of both �1��2 and
�1��2, agreeing with the results of earlier linear stability
analyses. Variation in the flow rate does not seem to signifi-
cantly alter this pattern.

In the context of the nonlinear dynamics observed, it
should be noted that asymptotic analyses of the core-annular
flow in straight tubes in the limit of small film thickness have
led to the Kuramoto–Sivashinsky equation, e.g., Ref. 9. Nu-
merical studies of this equation have documented similar
processes of appearance, growth, sharpening, and nonlinear
interaction of disturbances at extraneous frequencies not co-
inciding with that of the fastest growing wave of the linear
stability analysis. However, as noted in Sec. I, such
asymptotic models have a limited practical value as they
have been unable to predict the formation of liquid bridges
across the tube.

Instabilities of the interface do not occur if there is no
initial pressure gradient that would enable migration of the
core fluid from the neck, that is, geometric condition �14� is
not satisfied. In that case, the evolution of the interface pro-
ceeds toward a quick equilibration of the initial configuration
toward steady-state flow.

The evolution equation is asymptotic in the sense that it
has been derived with the small-slope assumption �a suffi-
ciently small parameter ��. The results obtained through the
numerical integration of the evolution equation have been
validated against two numerically independent, fully dy-
namic CFD codes for �’s changing from nearly one down-
ward. As one could anticipate, the validations showed an
improving match between the evolution equation and CFD
with decreasing �. The comparisons have also demonstrated
that the evolution equation reasonably well describes inter-
face shapes and times to the breakup �within a factor of 2
or so� even for the slope parameter � approaching the value
of 1.

The evolution-equation approach proves to be an effi-
cient way to distinguish between different physical scenarios
and inexpensively compute the dynamics of a free fluid/fluid
interface.
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