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ABSTRACT
There is far-reaching equivalence between the source time functions inferred from
dynamic rupture simulations and those corresponding to the kinematic models of slip
radiating the generalized omega-n spectrum, in which the power n is allowed to take
on noninteger values. First, the same two physical parameters of faulting—the final-fault
displacement U and the peak rate of slip vm—govern the slip law in both cases. Second, in
both models, the widths of the radiated far-field velocity pulses follow close analytical
forms. Third, the full variety of temporal shapes of the dynamic source time functions, span-
ning the entire parameter space, closely corresponds to the variation in the omega-n shapes
with n changing from 1.5 to 3.5, approximately. Smaller n lead to the source time functions
that reach the maximum value of slip velocity faster: they cause greater asymmetry of the
resulting far-field ground-displacement pulse and shorter duration of the positive velocity
pulse. Fourth, in the frequency domain, the ωn spectrum, in which n changes in a narrower
range from approximately 2 to 2.5, similarly includes nearly the entire range of possible
dynamic Fourier spectra. The narrower range in n found in the frequency domain is
explained by the constraints on the spectral slope imposed by the specific triangular shape
of the dynamic functions. Fifth, in both dynamic and ωn models, the peak rate of slip vm is
the parameter exerting dominant effect on the strength of fault’s high-frequency radiation,
in the identical quantitative manner. It follows that the omega-nmodel of slip, in which n is
allowed to vary, correctly captures the underlying physics of rupture.

KEY POINTS
• Are slip functions used in kinematic ground-motion mod-

els equivalent to those inferred for dynamic ruptures?

• The slip functions corresponding to omega-n models are
equivalent to those obtained from dynamic simulations.

• Models of slip that radiates the generalized omega-n
spectrum correctly capture the underlying rupture physics.

INTRODUCTION
Prescribing the temporal shape of slip on causative faults (the
source time function) is one of the crucial components in the
models of synthesizing future ground motions for seismic
hazards. Such function is nonetheless one of the most poorly
observationally constrained characteristics of faulting. The
early classic kinematic models of earthquake radiation intro-
duced the source time (slip) function that is as simple as a lin-
ear ramp, known as the Haskell model (Aki and Richards,
1980, their equation 14.19). In this case, the temporal depend-
ence of slip velocity (the time derivative of source displace-
ment) is a rectangle. Because the slip velocity (not fault

displacement itself) controls the far-field radiation, the litera-
ture has focused on choosing the other alternative acceptable
shapes of the slip-velocity functions (SVFs).

The models of source slip in kinematic ground-motion sim-
ulations have often assumed the temporal functions that radi-
ate the Fourier spectrum of seismic displacement into the far
field having the “ωn” shape. Such an amplitude spectrum is flat
at low frequencies and falls off as −n beyond its corner fre-
quency. The classic examples include the exponential rise to
static displacement (n = 1) (Aki and Richards, 1980, p. 810)
or the Brune SVF (n = 2) (Brune, 1970, his equation 17).
Beresnev (2019, his equation 4) found that all omega-n source
time functions, for any real (not necessarily integer) positive n
could be encompassed by a single formula,
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in which Δun�t� is the fault slip, U is its final (static) value,
and Γ�a; x� is the incomplete gamma function [Γ�a; x� �R
∞
x e−t ta−1dt]. The quantity τ is the time scale, related to the
physical parameters of faulting U and vm as
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in which vm is the maximum velocity of slip (Beresnev, 2001, his
equation 3; Beresnev, 2019, his equation 8). Here, the factorial is
resolved through the gamma function Γ�n� � �n − 1�!. The
quantity τ controls the value of the corner frequency of the radi-
ated omega-n spectrum ωc � 1=τ. Smaller n in the functional
series in equation (1) lead to the source time functions that reach
the maximum value of slip velocity vm faster: they cause greater
asymmetry of the resulting far-field ground-displacement pulse
and shorter duration of the positive velocity pulse.

The conceptual equation (1) captures the essence of fault slip,
in that it begins at zero, rises to achieve the maximum velocity,
and then gradually approaches the static value (e. g., fig. 1 of
Beresnev, 2019). It allows for the fact that fault movement never
in reality stops, continuing to indefinitely creep at a very
small rate.

The slip velocity (the derivative of equation 1) is
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(Beresnev and Atkinson, 1997, their equation 8; Beresnev,
2019, his equation 5). Functions from the equations (1) or
(3) have been commonly utilized in ground-motion prediction,
especially the ω2 shape in the popular stochastic method
(Beresnev and Atkinson, 1997; Boore, 2003; Motazedian and
Atkinson, 2005, Mena et al., 2010); however, they do not follow
from rigorous physical solutions.

Fault-displacement functions have also been proposed that
follow from dynamic simulations of earthquake ruptures. Such
solutions cannot be considered a satisfactory alternative either.
Dynamic simulations have to specify numerous laws and
physical parameters that are largely unconstrained by observa-
tions and have to be virtually guessed. Examples include the
details of dynamic and static fault friction, fracture energies,
stresses acting on fault planes, material rheology and stress
concentrations at the fracture tip, as well as spatial hetero-
geneity in all these quantities. A well-known deficiency of the
rigorous linear-elastic fracture mechanics is its inability to
remove stress singularities from the tips of the cracks. The
often phenomenological approximations that have to be made,
albeit helping clarify the physics, have not reached the stage of
being able to reliably supplant in their accuracy the kinematic

models that make reasonable assumptions about the slip func-
tions (e.g., Graves and Pitarka, 2010, p. 2095). The kinematic
models have been adopted as the Broadband Platform (BBP)
for ground-motion simulation by the Southern California
Earthquake Center (SCEC) (Dreger and Jordan, 2015). They
do benefit from established features of dynamic solutions
(Graves and Pitarka, 2010; Pitarka et al., 2022).

Guatteri et al. (2004) made an effort to summarize and
parameterize the functional forms of slip-rate functions that
were produced by a large number of dynamic simulations.
Because their model is an approximate generalization, they
called it “pseudodynamic.” Other studies have also proposed
similar dynamically compatible generalizations (e.g., Tinti
et al., 2005; Liu et al., 2006). All three formulations are approx-
imately equivalent (Graves and Pitarka, 2010, their fig. 3). It is
our goal here to probe the compatibility of the SVFs as repre-
sented by the Guatteri et al.model with the ωn functional shape
(equations 1 and 3) commonly used in kinematic simulations.

THE PSEUDODYNAMIC AND ωn SOURCE TIME
FUNCTIONS
Form of the functions
Pseudodynamic form. The shape of the generalized slip-
rate function deduced by Guatteri et al. is represented in their
figure 4: it is composed of two overlapping triangles, an isos-
celes one (the main pulse) and a rectangular one (the tail) (see
e.g., in Figs. 1, 2 subsequently). The heights of the main and the
tailing triangles are vm and cvm, respectively, in which c is
allowed to vary (0 < c < 1). The free parameters used are
encapsulated in the authors’ equations (8), (11), and (13): they
are vm, U, c, and β1. The quantity β1 is defined in the authors’
equation (11):

EQ-TARGET;temp:intralink-;df4;308;94Tp � β1
U
vm

; �4�

Figure 1. Comparison of the “standard” pseudodynamic (β1 � 0:84 and
c � 1

2) and the ω2 slip-velocity functions (SVFs).
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in which they term Tp the “pulse width” (p. 2055) and equate it
to the base of the main triangle (their fig. 4). One can see that
β1 is equivalent to the coefficient �n − 1�n−1=��n − 1�!en−1� in
equation (2), and that the time constant τ in equation (2) char-
acterizes the pulse width.

We have recast the shape of the triangles through these four
parameters. The complete form of the pseudodynamic SVF
becomes:
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The upper time limit in equation (5c) corresponds to the
total SVF duration of �β1 � 1=c�U=vm defined by Guatteri et al.
(see equation 11). For an arbitrary duration τr , equation (5c)
should be replaced by
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�5d�
It is also convenient to reduce equation (5a)–(5d) to a non-

dimensional form through the dimensionless time t1�t=�U=vm�:
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It is important to recognize that the Guatteri et al. functional
shape (equation 5) is parameterized through the same physical
quantities U and vm as the omega-n slip function (equations 1
and 2). On the other hand, the Tinti et al. pulse was produced
from the original Yoffe source time function by formally con-
volving the latter with a triangle to remove the singularity at the
rupture front. This procedure involved an artificially introduced
smoothing time window equal to the half-duration of the tri-
angle. The length of the window becomes an inherent but
not strictly physical regularization parameter that ultimately
controls the resulting ground-velocity pulse. This is a conceptual
disadvantage of the Tinti et al. formulation that is absent from
Guatteri et al.’s, whose free parameters carry intuitively clear
physical or geometrical meaning. Another methodological dis-
advantage is that the velocity pulse in this formulation is not
analytically integrable to obtain the corresponding time history
of slip (Graves and Pitarka, 2010, p. 2098).

The Liu et al. functional form (their equations 7a and 7b,
reproduced in more detailed form by Aagaard et al., 2010, their
equations 5–10) was derived from Guatteri et al.’s result but
approximated by trigonometric functions. The important dis-
tinction with the original Guatteri et al. model is that vm, the
physical parameter of faulting that cannot take on arbitrarily
large values (e.g., Beresnev, 2022), was replaced by the subfault
rise time in Liu et al.’s modification. In our view, such a new
formulation may implicitly lead to unrealistically large slip
rates, a potential pitfall that their model no longer controls.
The fact that the chosen pulse width in their approach strongly
affects the shape of the resulting radiation spectra has also been
noted by Mena et al. (2010, pp. 2146–2147).

The rise time on faults is controlled, on average, by the
earthquake magnitude (e.g., Kanamori and Anderson, 1975,
the dynamic-similarity condition in their equation 10) and

Figure 2. The approximate range of change in the shapes of the pseudody-
namic and ωn SVFs. The end-member cases are shown: from β1 � 0:5, c �
9=10 (“short pulse, high tail”) to β1 � 1:5, c � 1=4 (“wide pulse, low
tail”) for the pseudodynamic function, and from n = 1.5 to n = 3.5 for the
ωn function.
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hence cannot be taken as a truly independent parameter. An
additional disadvantage of the Liu et al. formulation is that it
puts the time at which the maximum slip velocity occurs at a
fixed fraction of the total duration τr , thus losing the inherent
flexibility in the SVF shapes allowed in the original Guatteri
et al.’s form.

For the multiple reasons mentioned, we chose the Guatteri
et al. original model as the basis for our comparisons. Their SVF
has been tested and used without modifications in the determin-
istic broadband simulations of strong ground motions (e.g.,
Skarlatoudis et al., 2015, their fig. 1).

The equations for slip velocity (equation 6) are time inte-
grated to fault displacement to obtain:
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ωn form. For comparison with equations (5) and (6), we
recast the velocity pulse (equation 3) of the general omega-
n model in the explicit form through the same faulting param-
eters vm and U:
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and in the nondimensional form,
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Rise time. The total duration of the pseudodynamic slip-rate
pulse, including both triangles, is termed the “rise time” by
Guatteri et al. denoted by τr . They arrive at the following equa-
tion for the rise time (their equation 13):
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which using equation (4), is transformed into
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Guatteri et al.’s preferred values of β1 and c are β1 � 0:84
(their equation 11) and c � 1

2 (p. 2056); in the following, we
will hence call them the “standard” values. Using them in equa-
tion (11) yields
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On the other hand, the rise time of the omega-n slip function
(equation 1) can be defined as the period over which the dis-
location grows to 0.99 U. The rise time τr in this case is found
as the root of the equation 1 − Γ�n; t=τ�=Γ�n; 0� � 0:99. For
example, solving it for n = 2 (the commonly used omega-square
model), we find τr=τ � 6:64. Thus the rise time for the omega-
square model, equivalent to equation (12), is

EQ-TARGET;temp:intralink-;df13;308;379τr � 6:64τ � 2:44
U
vm

; �13�

in which the value of τ for n = 2 was substituted from equa-
tion (2). Comparing equation (13) with (12) shows that the rise
time for the omega-square slip is closely equivalent to the pseu-
dodynamic case of Guatteri et al.

Comparison between the functions. Figure 1 compares
the pseudodynamic SVF for the standard values of β1 � 0:84
and c � 1

2 (equation 6) with the ωn one for n = 2 (equation 9).
We chose n = 2 as the reasonable equivalent to the “standard”
pseudodynamic condition, as this value of n likewise corre-
sponds to a widely accepted omega-square model. The two
curves clearly are similar, and both exhibit the presence of the
main pulse and the tail.

The shapes of the triangles in the pseudodynamic model
vary within the range of the possible values of β1 and c.
Based on figure 5 of Guatteri et al., the representative range
of change in the pulse-width coefficient β1, obtained from a
variety of dynamic simulations, excluding extremes, is between
approximately 0.5 (“short” pulse) and 1.5 (“wide” pulse). The
end-member cases of the triangle shapes, characterizing the
possible variety, can thus be reasonably set as β1 � 0:5 and
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c � 9=10 (“short pulse, high tail”), on one hand, and β1 � 1:5
and c � 1=4 (“wide pulse, low tail”), on the other. These two
functions are plotted in Figure 2 in gray color. Dynamic simu-
lations conducted by Pitarka et al. (2022, their fig. 6) have repro-
duced a similar range of patterns of the slip-rate functions.

The full variety in the shapes of the ωn SVF can be char-
acterized by the values of n from 1.5 to 3.5, approximately.
These are plotted in Figure 2 as well as black lines. The com-
parison with the pseudodynamic SVFs shows close similarity
between the respective end-member pairs.

The static value of Δu�t1�=U in equation (7c) at t1 � β1 �
1=c should be equal to one. However, substitution shows that
this value is �1� β1�=2; in other words, the Guatteri et al.
SVFs do not preserve the prescribed final slip. Namely, at the
representative values of β1 � 0:5, 0.84, and 1.5 that we have
used, the final-fault slip is 0.75U, 0.92U, and 1.25U, respectively.
On the other hand, the ωn source time functions do not display
such as undesirable behavior. To illustrate, Figure 3 compares
the slip functions corresponding to the SVFs from Figure 1.
The ω2 slip is taken from equation (1) for n = 2, in which case
equation (1) reduces to Δu�t� � U �1 − �1� t=τ� exp�−t=τ��
(Beresnev and Atkinson, 1997, their equation 6) and is plotted
here in the nondimensional form. The standard dynamic slip is
represented by equations (7). It is seen that the dynamic solution
underpredicts the static slip, which in this case equals 0.92U. The
inability of the Guatteri et al. pseudodynamic solutions to cor-
rectly match the prescribed levels of final-fault displacement is
their conspicuous drawback, absent from the ωn solutions.

Spectra of the functions
Fourier spectrum of the pseudodynamic function. It is
also important to test the equivalence of the pseudo-dynamic
and ωn source time functions in the frequency domain. The
complex Fourier transform of the nondimensional SVF (equa-
tion 6), calculated as
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in which ω1 is the dimensionless frequency, and that of the dimensional SVF (equation 5), calculated asR �U=vm��β1�1=c�
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Fourier spectrum of the ωn function. The spectrum of the
nondimensional SVF (equation 9) is

EQ-TARGET;temp:intralink-;df17;320;497Δu
̣
n�ω1� �

��n − 1�!�nen�n−1�
�n − 1�n�n−1�

�
iω1 �

�n − 1�!en−1
�n − 1�n−1

�
−n
; �17�

and the spectrum of the dimensional velocity pulse in equa-
tions (3) and (8) takes the familiar compact omega-n form:
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Comparison between the spectra. The nondimensional
Fourier amplitude spectra of SVFs presented in Figures 1
and 2 are compared in Figure 4. The pseudodynamic spectra
are shown in color, whereas the ωn ones in shades of gray, with
n changing here from 1.5 to 2.5, the middle curve being the
case of n = 2. The units on the frequency axis in Figure 4

Figure 3. The slip functions corresponding to SVFs in Figure 1.
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are for convenience given in hertz, even though the spectra in
equations (15) and (17) are expressed through the dimension-
less frequency ω1. Rewriting the exponent in the Fourier trans-
form equation (14) as exp�−iω1t1� � exp�−iω1t=�U=vm��
� exp�−iωt�, we find the requisite relationship between ω
and ω1 : ω � ω1=�U=vm�. The parameters U and vm are
needed to convert the dimensionless frequency to the dimen-
sional ω. Accordingly, the example of Figure 4 was produced
for an Mw 5 earthquake, with the fault offset U = 0.14 m calcu-
lated as U � M0=�μA�, in which the seismic moment M0 was
obtained from the moment magnitude Mw and the fault area A
from the empirical relationship between the rupture area and the
moment magnitude (Wells and Coppersmith, 1994, their table
2A). The shear modulus μ was calculated as μ � β2ρ, in which
the density ρ was taken as 2700 kg=m3 and the shear-wave veloc-
ity β obtained from the P-wave velocity of 5000 m/s as
β � 5000=

���
3

p
m=s. A typical value of vm � 1 m=s was adopted

(Beresnev, 2022). To better observe the high-frequency slopes,
the frequency range has been extended to 100 Hz.

One can observe that the ωn spectral model, in which n
changes from approximately 2 to 2.5 (within the space around
the two lighter-gray lines in Fig. 4) encompasses nearly the
entire range of the possible pseudodynamic spectra.

The range of change in n (2–2.5), compatible with the full
range of pseudodynamic spectra, is narrower than that (1.5–
3.5) derived from comparing the temporal shapes in Figure 2.
In understanding the origin of this difference, one should recall
that Guatteri et al.’s dynamic SVFs carry an imposed triangular
shape. The amplitude spectrum of an isosceles triangle has the

ω−2 high-frequency spectral decay: the specific high-frequency
content is prescribed by the need to preserve the sharp corners
of the triangles. One can expect, for example, that smoothing the
triangles will modify the high-frequency slope.

To examine the effect of smoothing on the resulting fre-
quency spectra, it is convenient to decompose the SVF, defined
in equations (5a), (5b), and (5d) on the general interval 0 to τr ,
into its Fourier expansion by sine functions:

EQ-TARGET;temp:intralink-;df20;308;393Δu
̣ �t� �

X∞
k�0

bk sin
kπt
τr

; �20�

in which

EQ-TARGET;temp:intralink-;df21;308;327bk �
2
τr

Z
τr

0
Δu

̣ �t� sin kπt
τr

dt �21�
(Bronshtein et al., 2004, their equation 7.112c). Integration in
equation (21) yields the Fourier coefficients

EQ-TARGET;temp:intralink-;df22;308;263bk �
8vm
pπ2k2

�
sin

�
p
2
kπ

�
� 1 − p

�c − 2�p� 2
sin

�
c − 2
2

pkπ

��
;

�22�

in which the parameter p is defined as p ≡ �β1=τr��U=vm�.
Considering equation (4), p has the meaning of the fraction
of the pulse width Tp relative to the rise time τr .

An infinite number of harmonics in the series (equation 20)
are formally needed to exactly reproduce the shape of the tri-
angles. As described by the Gibbs phenomenon (Båth, 1974,
his section 2.1.2), the fewer harmonics are retained, the
smoother the shape. Figure 5 compares the shape of the exact
standard pseudodynamic SVF with its approximate form
obtained from expansion (20) when only 15 harmonics have
been used in the sum (k increasing from zero to 15). The

Figure 4. Comparison of Fourier amplitude spectra of pseudodynamic and ωn

SVFs presented in Figures 1 and 2. The pseudodynamic curves are shown in
color and the ωn ones in shades of gray.

Figure 5. Comparison of the “standard” pseudodynamic SVF (β1 � 0:84
and c � 1

2) with its smooth version obtained from its Fourier expansion
retaining 15 first harmonic terms.
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graphs have been plotted to τr on the horizontal axis, deter-
mined from equation (13) using the same values of U and
vm as for producing Figure 3 (τr � 2:44 × 0:14=1 � 0:34 s).
The highest frequency in the expansion (equation 20) at
k = 15 is 22 Hz. Figure 5 demonstrates that 15 harmonics
are sufficient to nearly completely recover the original
triangular shape by its smoother variant, except the presence
of the sharp corners that do not represent physically realistic
features.

The moduli of the amplitudes bk of the 15 harmonics rep-
resented in Figure 5, calculated from equation (22) and nor-
malized by vm, to render them in a dimensionless way, are
shown by the filled circles in Figure 6. The solid line indicates
the slope of −2, expected for the exact triangular shape. The
pattern defined by the circles follows the slope that is conspic-
uously less than −2, indicating that smoothing the triangles
modifies the frequency fall-off in the spectral domain, the spe-
cific decay being a function of the degree of smoothing. With
no smoothing applied, the slope can be expected to be close to
−2, as observed for the exact triangular shapes in Figure 4
explaining the relative clustering of their Fourier spectra.

Comparison of high-frequency radiation. In the omega-
n model, the parameter that controls the strength of fault’s
high-frequency radiation is the maximum slip rate vm (e.g.,
Beresnev, 2022). The ω≫ ωc asymptotics of equation (19) is

EQ-TARGET;temp:intralink-;df23;53;172jΔụ n�ω�j �
��n − 1�!�nen�n−1�
�n − 1�n�n−1�

vnm
Un−1 ω

−n; �23�

in which the expression for ωc from equation (2) has been uti-
lized. It follows that, for given earthquake magnitude (the value
of U), there is a strong power-of-n dependence of the high-fre-
quency spectral level on vm. For example, for the omega-square
spectrum (n = 2), equation (23) reduces to

EQ-TARGET;temp:intralink-;df24;320;325jΔụ �ω�j � e2
v2m
U

ω−2; �24�

that is, the spectrum scales as v2m. For the respective Guatteri
et al. spectrum in equation (16), such a relationship with vm is
not as obvious but can be checked numerically.

To compare the effect of slip velocities, the dimensional
forms of the equations should be used. As an example,
Figure 7 compares the effect of doubling the value of vm
from 1 to 2 m/s on the resulting full amplitude spectra of
the dimensional ω2 (n = 2) SVF (equation 19) and the “stan-
dard” dimensional pseudodynamic (β1 � 0:84 and c � 1

2) SVF
(equation 16). The value of U = 0.14 m was again used in
the computation. As expected for the ω2 spectrum, doubling
vm leads to the multiplication of the high-frequency spectral
values by a factor of four according to equation (24)
(Fig. 7a). The same multiplication also occurs for the pseudo-
dynamic spectrum (Fig. 7b), showing complete quantitative
equivalence of the dominating role of the maximum slip rate
in controlling the strength of high-frequency levels in both
models.

Figure 6. The moduli of the amplitudes of the first 15 harmonics in equa-
tion (22).

Figure 7. Effect of vm on the high-frequency levels of the amplitude spectrum
of SVF. (a) Spectra of the dimensional ω2 SVF for vm � 1 and 2 m/s.
(b) Spectra of the “standard” dimensional pseudodynamic (β1 � 0:84 and
c � 1

2) SVF for vm � 1 and 2 m/s.
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CONCLUSIONS
There is a far-reaching equivalence between the generalized
fault SVF, inferred from dynamic rupture simulations by
Guatteri et al. and the ωn SVF commonly used in kinematic
simulations of fault radiation.

Both SVFs are controlled by the same two physical param-
eters of faulting: the static offset U and the maximum slip rate
vm. Two parameters are fundamentally needed, because they
exert their primary effect on the low- and high-frequency parts
of the spectra, respectively (Beresnev, 2009).

The fault rise times in both models are conveniently
expressed through the same two physical parameters and are
close numerically. The mutually equivalent additional param-
eters that affect the rise times are β1 and c in the dynamic case,
on one hand, and n in the omega-n model, on the other.

The full range of change in the temporal shape of the pseu-
dodynamic source time function, spanning the entire space of
parameters, roughly corresponds to the full range of change in
the omega-n functions with n ranging from approximately 1.5 to
3.5. In the Fourier domain, the omega-n model, in which n
changes in a narrower range from approximately 2 to 2.5, covers
nearly the entire variety of the possible pseudodynamic spectra.

The value of the peak slip velocity exerts dominant control on
the strength of high-frequency radiation in both models. For
example, for both the pseudodynamic SVF with Guatteri et al.’s
preferred shape, on one hand, and the omega-square SVF, on
the other, the high-frequency levels scale exactly as v2m.

The inability of the Guatteri et al. pseudodynamic SVF to
preserve the prescribed static displacement U on the fault, the
amount of error being controlled by the parameter β1, is its
significant disadvantage as compared to the ωn functions.
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