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Abstract Analysis of capillary-pressure distribution in single channels with sinusoidal
profile shows that surface tension-driven flow in such channels is controlled by the pressure
extrema at their “crests” and “troughs”. Formulating the geometric condition for the pressure
in the troughs to exceed that in the crests leads to a simple criterion for the spontaneous
break-up of the non-wetting fluid in the necks of the constrictions. The criterion reduces to
the condition for the Plateau-Rayleigh instability as a limiting case. Similar pressure analysis
is applicable to the case of a non-wetting fluid invading an open pore body. Computational-
fluid-dynamics experiments have verified the validity of the break-up predicted from the
capillary-pressure argument. Although the geometric criterion for the break-up is valid for
small capillary numbers, it provides a common framework in which the results of various
published studies of a non-wetting phase choke-off in capillary constrictions for a wide range
of capillary numbers can be explained and understood.
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1 Introduction

Spontaneous surface tension-driven break-up of immiscible non-wetting fluids into isolated
drops in sinusoidally constricted channels has been subject of several studies, with the focus
on revealing the conditions under which it occurs (Olbricht and Leal 1983; Tsai and Miksis
1994; Hemmat and Borhan 1996; Gauglitz and Radke 1990). The interest has been caused
by the phenomenon’s technological applications arising in petroleum recovery and chemical
engineering (foam and mono-disperse emulsion formation). In formulating such conditions,
the fact has often been overlooked that the geometry of the constriction plays a fundamental
role in determining if the fluid breaks up into beads or remains continuous, while the char-
acteristics of the fluid itself and the flow can only promote or impede the break-up already
prescribed by the geometry.

The interpretation of the conditions for the break-up in terms of just the flow parame-
ters, out of the context of the geometry, can be misleading, as it seeks the explanation of
the phenomenon in the factors other than its true causes, making it appear all but enigmatic
why the break-up occurs in some cases but not in the others. Hemmat and Borhan (1996,
p. 383) directly indicate, for example, as the conclusion to their experiments that “the role of
the capillary geometry in determining the critical conditions for the onset of drop breakup
warrants further investigation”. On the other hand, realizing that the geometry is the most
important factor controlling the fluid disintegration could provide a unifying framework in
which results of miscellaneous observations could be related and understood.

Another group of studies, acknowledging the critical role of geometry, attempts to reduce
the criterion for the snap-off to just the ratio of the minimum and maximum channel radii
(Rossen 2003; Kovscek et al. 2007). This condition would also be incomplete, because it
neglects the presence of a channel’s wavelength, which enters as another important control-
ling parameter. The full description would invoke all three geometric parameters and has
never been explicitly formulated.

This study is devoted to realizing this goal. It derives the geometric condition for the spon-
taneous snap-off of a non-wetting fluid in a sinusoidally constricted capillary and demon-
strates that it succeeds in explaining the results of various published studies. The theoretically
deduced condition is verified in a computational-fluid-dynamics experiment.

2 Geometry of the Problem

We are concerned with an axisymmetric capillary channel having a sinusoidal profile as
depicted in Fig. 1. In the cylindrical coordinates, the channel profile is defined by the follow-
ing equation:

r(z) = rmax

[
1 + 1

2

(
rmin

rmax
− 1

) (
1 + cos π

z

L

)]
, (1)

where rmin and rmax are the minimum and the maximum radii, and λ ≡ 2L is the spatial
period. The channel is filled with a non-wetting core fluid, and an assumption is made that
a thin film of a wetting fluid separates the non-wetting phase from the channel wall. In
typical oil recovery applications, the non-wetting core phase would be oil and the wetting
phase would be water. Our analysis will assume small capillary numbers (Ca), at which the
deformation of the oil phase due to viscous forces can be neglected.

We start with deriving the condition for the break-up for the case of the oil totally filling
the channel, and then will discuss how the analysis changes for the case of oil invading a
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Fig. 1 Geometry of the problem

water-occupied pore body (drainage). A common terminology will be used, in which a “pore
body” is the open space with the maximum radius rmax contained between two constrictions,
and the constriction itself is a “pore throat”.

3 Simple Static Criterion for the Break-up: The Non-Wetting Fluid Filling
the Channel

The spontaneous break-up of fluid streams and jets is driven by capillary forces, which
arise due to variation in the capillary-pressure along the boundaries. In the wetting film, the
pressure is approximately constant across its thickness (Lamb 1997, art. 330). Furthermore,
if the film is sufficiently thin (at the initial stages of the development of the collars of water
that will eventually complete the snap-off), it is also reasonable to assume that there are
no pressure gradients in the film along the solid wall either. There are three observations
that support this conclusion. First, if such internal gradients existed, for example, the water
completely filling a corrugated channel would spontaneously circulate, which is certainly not
the case. This is physically well justified, of course, because the surface of a wetting fluid in
contact with a solid wall does not possess any extra energy (the definition of “wetting”), and
therefore no significant capillary forces exist at this surface. Second, the absence of internal
gradients is evidenced by the stability of water coatings spread over wettable substrates (e.g.,
glass). This stability can be understood in terms of the constant pressure within them; any
internal gradients would inevitably force recirculation and break-up, but such wetting films
are observed not to disintegrate spontaneously. Third, in an unconfined immiscible environ-
ment, oil droplets inevitably take the form of spherical globules. The fact that the end result
is independent of the surrounding phase, be it air under constant atmospheric pressure or
fluid, supports the view that, to describe the final state, the pressure in the surrounding phase
can be considered constant and the process driven solely by the internal pressures in the oil.
We thus arrive at the conclusion that the pressure in the surrounding phase is approximately
uniform for the purposes of our analysis. Note that a similar premise was used by Bretherton
(1961, p. 167) and Middleman (1995, p. 60).

With this observation in mind, the evolution of the fluid/fluid interface can be considered
to be controlled by the pressure gradients in the core, while the film responds passively. Note
that, in explaining the physical reasons for the break-up of oil, Roof (1970) took a similar
approach, in which the oil snap-off was assumed to be caused solely by the gradients in
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the core pressure; the author nevertheless provided no physical reasons why the pressure in
the film could be taken constant. Roof (1970, p. 88) found reasonable agreement between
the experimentally observed distance traveled by an oil interface through a given geometry
before it snapped off and the theoretically predicted value based on the differences in core
pressure, which validates his point.

The pressure in the oil, relative to water, is described by the Laplace equation

Pca = σ (1/R1 + 1/R2) , (2)

where Pca is the capillary-pressure, σ is the oil/water interfacial tension, and 1/R1 and 1/R2

are the principal curvatures of the channel surface (those of two mutually orthogonal principal
normal sections; R1 and R2 are the principal radii of curvature). The curvature is considered
positive under a “convex” surface (such as one under the “crests” of the profile in Fig. 1; e.g.,
at z/L = 1), as it then correctly leads to a pressure increase, and negative under a “concave”
surface (under the “troughs”; e.g., at z/L = 0). Note that a sum of any two normal curvatures
(corresponding to any pair of mutually orthogonal normal sections) can be taken in Eq. 2
(Graustein 2006, p. 113).

Let us consider two cross-sections perpendicular to the channel axis: one at its maximum
radius (the crest) and another at its minimum radius (the trough) (the cross-sections with rmax

and rmin in Fig. 1). As it is clear from the geometry, at the crest, both normal curvatures are
positive. One (in the plane perpendicular to that of Fig. 1) equals 1/rmax and the other (in the
plane of Fig. 1) is the curvature of the sinusoidal profile (1), which, as seen from its general

form (A-6), equals π2rmax
2L2

(
1 − rmin

rmax

)
, with the correct sign chosen. The capillary-pressure

at the crest therefore is

Pcrest
ca = σ

[
1

rmax
+ π2rmax

2L2

(
1 − rmin

rmax

)]
. (3)

If we now turn to the trough, one normal curvature is still positive (1/rmin), but the other is
negative but still has the same absolute value as that at the crest (the “saddle” shape). The
capillary-pressure at the trough becomes

P trough
ca = σ

[
1

rmin
− π2rmax

2L2

(
1 − rmin

rmax

)]
. (4)

If the pressure at the neck of the constriction exceeds that at the crest, the resulting pressure
difference, equal to

P trough
ca − Pcrest

ca = σ

[
1

rmin
− 1

rmax
− π2rmax

L2

(
1 − rmin

rmax

)]
, (5)

will drive the non-wetting fluid out of the neck toward the crest of the profile, with an accom-
panying invasion of the wetting fluid into the neck and the resulting pinch-off (Roof 1970).
The condition for this gradient to form is P trough

ca > Pcrest
ca , or, from Eq. 5,

λ > 2π
√

rminrmax. (6)

We will call condition (6) the static criterion for the oil break-up in the neck. It is evidently
controlled by the geometry only and has not appeared in the earlier literatures (Rossen 2003;
Kovscek et al. 2007). We use the word “static” throughout the manuscript to emphasize the
point that the analysis strictly applies to a stationary problem. As long as the capillary num-
ber is small, the interfacial forces dominate the flow and this assumption remains justified.
The stationary problem also assumes that sufficient inflow of water is available into the neck
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to complete the snap-off. As we will see in the sections verifying the applicability of this
analysis using numerical simulations and available experimental data, it agrees with the data
even at finite capillary numbers.

It also should be noted that we limit ourselves to single constricted channels only and
leave out possible modifications due to pore connectivity (Rossen 2003).

Strictly speaking, condition (6) applies to the onset of instability while the film is still
thin enough. When the oil starts to flow and the water collar in the neck starts to grow,
the assumption of a uniform pressure in the wetting phase will eventually break down. The
collar growth will cause rmin to tend to zero, while rmax will remain by order of magnitude
the same. The condition (6) for the oil pressure in the neck to exceed that in the crest will
therefore still be valid, ensuring continuous outflow of oil. It is thus reasonable to expect that
this condition, although formally valid for the onset of break-up only, will still be sufficient
to cause the complete snap-off. Indeed, all literature results surveyed below, as well as our
own CFD simulations also shown in a later section, indicate that meeting the onset criterion
leads to the eventual pinch-off.

In the limiting case of rmin = rmax ≡ R, criterion (6) simplifies to λ > 2πR, which
is the well known shortest wavelength to cause the instability of a liquid cylinder (the
Plateau-Rayleigh instability) (De Gennes et al. 2004, Eq. 5.22). If R is the radius of the core,
the Plateau-Rayleigh formula also describes unstable wavelengths for the core-annular flow
in straight cylinders, which can be deduced from the respective expressions of Hammond
(1983, Eqs. 2.23–2.24). Our condition (6) thus correctly converges to the known limiting
cases. Re-writing (6) in the form λ

2πrmin

λ
2πrmax

> 1 imparts it a simple geometric meaning:
its left-hand side represents a product of the ratios of the wavelength to the minimum and
the maximum circumferences of the tube.

One also may note that, if we have the opposite condition satisfied, P trough
ca < Pcrest

ca , the
core fluid will flow out from the crests into the neck seeking a stable configuration, which
will eventually be reached due to geometric confinement provided by the wall or if the radii
rmin and rmax can be equalized.

Condition (6), establishing the pressure gradient causing the outflow of oil from the neck
of the constriction, was obtained without regard to other possible intermediate pressure highs
and lows between the troughs and the crests of the profile. If they exist, the oil-flow pattern
may be more complex and not necessarily lead to the pinch-off at the neck. To prove the
general validity of criterion (6), one would have to show that the pressures at the neck and the
crest indeed control the pressure gradient in the oil phase. To that end, a general expression
for the principal curvatures at an arbitrary point on the channel surface should be obtained.
This expression is derived in Appendix A, and Appendix B proves the dominance of the cap-
illary-pressure in the troughs and crests over any other intermediate extrema for the parameter
combinations that allow analytical treatment. These parameter combinations cover a great
portion of the parameter space but of course not all of it. A general proof does not seem feasi-
ble due to the complexity of algebraic equation (B-3). The existence of intermediate extrema
and the value of capillary-pressure at them relative to that in the troughs and crests can of
course always be established graphically for any particular parameter combination, by directly
plotting expression (B-1). An example of such an analysis is provided in the next section.

4 Illustration of the Criterion Validity

We would like to illustrate the capillary-pressure distribution along the channel for the con-
ditions at which criterion (6) is and is not satisfied. In the numerical example, we choose rmax
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Fig. 2 Capillary-pressure distribution along the channel for rmax = 0.1 mm and rmin = 0.01 mm.
a λ/(2π

√
rminrmax) = 3, b λ/(2π

√
rminrmax) = 0.5

and rmin of 0.1 and 0.01 mm to represent the typical pore sizes encountered in oil-bearing
reservoirs. Representing condition (6) as λ/

(
2π

√
rminrmax

)
> 1, we calculate the capil-

lary-pressure using Eq. B-1 for the values of 3 and 0.5 of the ratio on the left-hand side. The
former case should therefore lead to the pinch-off at the neck and the latter to the fluid outflow
from the crest toward a stable configuration. The channel wavelength λ in the two cases is
0.60 and 0.099 mm, respectively. The calculated pressure profiles are depicted in Fig. 2 for
σ = 0.040 N/m.

For the geometry used in the example, rmin << rmax and rmax ∼ L . From the approximate
analysis provided in Appendix B, the intermediate extrema therefore exist but they do not
dominate the flow, which is consistent with the curves in Fig. 2. The coordinates of these
extrema that fall within the limits of applicability of Eq. B-11 should be the solutions of this
equation. For the geometry in Fig. 2a, Eq. B-11 yields cos π(z/L) = −1.2 and has no roots.
The local minima are nevertheless seen in Fig. 2a between z/L of 0.5 and 1, and 1 and 1.5.
This shows that they fall out of the range of the validity of Eq. B-11, due to the neglect of
higher powers of cosine used in deriving (B-11). On the other hand, for the geometry in
Fig. 2b, Eq. B-11 gives cos π(z/L) = −0.033, which has two roots, z/L = 0.51 and 1.49,
in the range of z/L shown in Fig. 2b. These “shallow” local minima are indeed present in
Fig. 2b. Two “gentle” local maxima can also be observed, between z/L of 0 and 0.5, and 1.5
and 2. The approximate analysis, for the same reason, was unable to capture these maxima
as well.

The curves in Fig. 2 demonstrate the validity of the static criterion. According to condition
(6), capillary-pressure has distinct peaks at the necks of the constrictions (z/L = 0, 2) in
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Fig. 2a, which will cause the fluid pinch-off at the necks. On the other hand, the opposite con-
dition is satisfied in Fig. 2b, causing the peaks in the capillary-pressure at the crest (z/L = 1)
and “sinks” at the throats. The outflow of fluid from the crests into the throats can thus be
expected. The effect of intermediate extrema in Pca in either case is insignificant.

5 Modification of the Analysis for the Non-Wetting Fluid Invading a Pore Body
(The Drainage Case)

The geometric conditions for the spontaneous break-up have so far been established and ver-
ified for the non-wetting fluid filling the channel. From the practical standpoint, the case of
the oil invading a water-occupied pore body (the drainage scenario) would also be important.
One should see how the analysis of the conditions for the break-up should be modified for
such a new situation. For simplicity, complete non-wetting by oil (zero contact angle) will be
considered. We will also assume the static condition, that is, neglect the disturbance of the
pressure field in water by the invading meniscus, this is possible because we neglect viscous
effects under the assumption of small capillary number.

For an invading non-wetting (spherical) meniscus, two cases should be distinguished as
illustrated in Fig. 3. In Fig. 3a, the curvature of the wall is sufficiently small that the moving
meniscus (two positions are shown) never intersects the wall. In this case, the invading oil is
always bounded by two interfaces: the solid wall and the spherical oil-water front tangent to
the wall at the three-phase contact line (at the axial coordinate zc).

This case is different from that in Fig. 3b, in which the curvature of the wall is large enough
to cause the invading meniscus to intersect the wall as it advances into the pore body. The
first configuration in Fig. 3b shows the still completely spherical invading meniscus when it
first touches the opposite (descending) wall. Following that moment, the previously contin-
uous meniscus splits up as shown by the second configuration: part of it continues to move

Fig. 3 Possible menisci
geometries for a non-wetting
fluid invading a pore body (the
motion is from left to right).
a Spherical meniscus not
intersecting the wall, b spherical
meniscus intersecting the wall
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forward as the leading spherical front CC, but a “remnant” of it advances toward the crests
of the pore as indicated by surfaces AB. These split menisci are separated by the solid wall
along surfaces BC. Note that the interfaces AB represent “caps” of tori formed as surfaces
of revolution of the circular arc AB about the z-axis. The oil is thus bounded by sections of
the solid wall, toroidal menisci AB, and the spherical front CC.

The cases in Fig. 3a and b are distinguished by the “no-intersection” condition,

2L2

π2rmax (rmax − rmin)
> 1 (7)

(Beresnev 2006, Eq. 5), namely if inequality (7) holds, the spherical meniscus does not inter-
sect the wall. We further analyze the capillary-pressure in these two cases separately.

5.1 The Invading Meniscus not Intersecting the Wall

The radius Rm of the sliding spherical meniscus in Fig. 3a is related to zc as

Rm (zc) = r(zc)
√

1 + r ′2(zc), (8)

and the capillary-pressure on the oil side is

Pm
ca (zc) = 2σ/Rm(zc). (9)

Let us re-consider the case of Fig. 2a in which this invading meniscus is now present. The
no-intersection condition (7) reads 2×(0.3 mm)2/[π2 ×(0.1 mm)×(0.1 mm−0.01 mm)] =
2.0, and is satisfied. In addition to the pressure distribution along the channel from Fig. 2a,
we now need to take into account the pressure at the invading front. Figure 4a shows both:
(i) it reproduces the curve from Fig. 2a (thin line) and (ii) compares it with Eq. 9 (bold line)
where the axial coordinate is that of the sliding contact line. These two curves should be
interpreted as follows. Recalling the invasion geometry in Fig. 3a, every point on the bold
line represents a constant oil pressure at the invading spherical front for given zc. This front
leaves a pressure distribution behind (to the left of zc) shown by the thin line. Figure 4a
therefore indicates that, up to a certain value of zc/L (about 0.2), the pressure at the front is
always greater than the pressure at any point behind it. However, when the front passes that
point, its pressure drops below the capillary-pressure at the neck (zc/L = 0). This creates
the condition for the break-up at the neck, which holds until the pressure at the moving front
is again above the value at the neck, which occurs at zc/L of about 1.8. The conditions for
the break-up at the neck thus exist as long as the moving front is between zc/L of ∼0.2 and
1.8. This modifies the analysis, previously presented in Fig. 2a, for the case of an invading,
non-intersecting meniscus.

5.2 The Invading Meniscus Intersecting the Wall

In the case of Fig. 2b, the right-hand side of the no-intersection condition (7) is 0.055, and
the condition is not satisfied. This case should thus be re-considered in the framework of the
geometry illustrated in Fig. 3b.

Figure 4b reproduces the curve from Fig. 2b (thin line), and it also shows the capillary-
pressure at the invading spherical front as two segments, before and after it touches the wall
(two segments of bold line). The bold lines are still calculated using Eq. 9. As Fig. 3b illus-
trates, there is no contact line of the spherical front between points D and E, which is reflected
in the separation of the two bold segments. Instead, when the front meniscus is at contact
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Fig. 4 Capillary-pressure analysis for the case of an invading meniscus. Thin lines reproduce pressure distribu-
tions from Fig. 2; bold lines are pressures at the invading spherical meniscus. a Spherical front not intersecting
the wall, b spherical front intersecting the wall

Fig. 5 Geometry of the circular
arc forming the upper and lower
menisci in Fig. 3b

point E and beyond, separate, toroidal menisci exist as the surfaces AB. The full analysis
should thus include the capillary-pressure at these interfaces.

The torus-forming circular arc AB is reproduced in Fig. 5, where Rt is its radius and zL is
the coordinate of its left contact line. From the geometry, zL = L − Rt sin θ , or, considering
that tan θ = r ′(z) (as in Fig. A-1),

Rt(zL) = (L − zL)

√
1 + r ′2(zL)

r ′(zL)
. (10)
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As also seen in Fig. 5, the r -coordinate of the center of this circle is r0(zL) = r(zL)− Rt cos θ ,
which, using (10), yields

r0(zL) = r(zL) − L − zL

r ′(zL)
. (11)

Note that expression (10) can be used to find the z-coordinate of point D in Fig. 3b (zD)

at which the invading meniscus first touches the opposing wall. Indeed, in this situation, Rt

becomes Rm. Consequently, by replacing Rt in the right-hand side of Eq. (10) by Rm from
Eq. 8, one obtains a nonlinear algebraic equation for zD that can be solved numerically. For
example, for the geometry of the example in Fig. 4b, this solution is zD/L = 0.23. This is
the coordinate at which the left segment of the bold line ends in Fig. 4b.

The parametric equation of the torus formed by the revolution of a circle with radius b
about an axis that is a distance a from the center of the circle (a > b) is

x(u, v) = (a + b cos u) cos v, (12a)

y(u, v) = (a + b cos u) sin v, (12b)

z(u, v) = b sin u (12c)

(cf. Eq. A-1). To find the principal curvatures, we can follow the approach outlined in Appen-
dix A. Using the formulae from Appendix A, the coefficients E, F, G, L , M, and N of the
first and second fundamental quadratic forms of the surface (12) are E = b2, F = 0,

G = (a + b cos u)2, L = b, M = 0, and N = (a + b cos u) cos u. From these values, the
sum of the principal curvatures for the torus is found as

1

R1
+ 1

R2
= a + 2b cos u

b(a + b cos u)
, (13)

which can be used in Eq. 2 to calculate the capillary-pressure. It is useful to determine the
behavior of capillary-pressure along the surface of the torus; for example, to determine the
minima and maxima of Pca. To this end, we take the derivative of Eq. 13 with respect to u and
equate it to zero, which leads to the equation sin u = 0. The extrema of the capillary-pressure
thus occur at u = 0, π , which correspond to the outer and the inner rings of the “doughnut”
(12), respectively. To further find out which of these extrema is the maximum and which
is the minimum, we take the difference of the values of Eq. 13 calculated at u = 0 and
u = π : (a + 2b)/ [b(a + b)] − (a − 2b)/ [b(a − b)] = 2a/ [(a + b)(a − b)]. Considering
that a > b, the right-hand side is always positive, showing that the sum of the principal
curvatures (13) has its maximum at u = 0 and the minimum at u = π . This means the
capillary-pressure under the toroidal surface monotonously decreases from its maximum at
the outer ring corresponding to the crest of the profile in Fig. 3b. This result was of course
intuitively clear, considering that both principal curvatures at the outer ring of the torus are
positive, and one is positive and the same at the inner ring while the other is negative (the
“saddle” shape).

We now can determine the position of the toroidal meniscus AB in Fig. 3b as the spherical
front CC progresses toward the throat ahead. We observe that the new position of the menis-
cus AB for a given position of the spherical front is reached when the maximum pressure
at AB equals the pressure at the spherical front. The maximum pressure under the toroidal
surface is found from Eq. 13 at u = 0. Considering that, in the notation of Fig. 5, b ≡ Rt and
a = r0, the maximum pressure is

Pt(zL) = σ
r0(zL) + 2Rt(zL)

Rt(zL) [r0(zL) + Rt(zL)]
, (14)
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where Rt and r0 are defined by Eqs. 10 and 11, respectively. Note that, although r0 is not
necessarily greater than Rt in our case, the capillary-pressure still has its maximum at the
crest of the profile. Since we are dealing with only part of the toroidal surface formed by the
circular arc in Fig. 5, this simply means there is maximum but no minimum of the pressure
over this surface. Equating pressure (14) to the pressure at the spherical front CC at given
position of its contact line zc (Eq. 9), we obtain a nonlinear algebraic equation for the position
zL of the left contact line of the toroid AB (the coordinate of point A in Fig. 3b) corresponding
to zc,

r0(zL) + 2Rt(zL)

Rt(zL) [r0(zL) + Rt(zL)]
= 2

Rm(zc)
. (15)

This equation can be solved numerically. For example, when the spherical front advances
half of the distance between its initial position (contact point at E) to the neck of the constric-
tion ahead (the right end of Fig. 3b) [this location is indicated as the dot labeled “3” on the
ascending bold line in Fig. 4b: zc/L = 2 − (zD/L)/2 = 2 − 0.23/2], the solution of Eq. 15
is zL/L = 0.84. This is the respective position of the left contact line of the upper toroidal
meniscus, as shown as dot “1” on the thin line in Fig. 4b. Dot “2” is therefore the location
of the right contact line. Since dots “1” and “2” bracket the location of the upper meniscus,
the capillary-pressure outside the bracketed interval follows the thin line in Fig. 4b. Note
that, when the spherical front advances to its extreme right position, with its contact line CC
touching the wall exactly in the neck of the constriction ahead, there is no solution to Eq. 15.
The capillary-pressure at the front in this case is 8,000 Pa (the value of the bold ascending
line in Fig. 4b at zc/L = 2). The absence of the solution means that this pressure is higher
than the maximum pressure at any position of the upper toroidal meniscus; in other words, by
this time the toroidal meniscus has disappeared and the non-wetting fluid has entirely filled
the pore body. Indeed, the maximum of Eq. 14 at any zL for which the upper meniscus exists
(zL/L between 0.23 and 1) is 7,600 Pa. The capillary-pressure behind the front at this time
then just follows the uninterrupted thin line in Fig. 4b.

With the exact positions of all menisci thus known, Fig. 4b then should be interpreted in
the same way as Fig. 4a. One can see that the pressure at the moving spherical front at any
time is greater than or equal to the pressure at any point behind it. This shows that, unlike
the situation of the continuous fluid distribution (Fig. 2b), no outflow of the fluid from the
crests of the profile leading to a respective reconfiguration of the interface there can now
be expected. This modifies the analysis, presented in Fig. 2b, for the case of an invading
meniscus intersecting the wall.

6 Validation of the Criterion in a Numerical Experiment

The validity of criterion (6) for the spontaneous break-up of a non-wetting fluid in the neck
of the constriction was verified in a numerical experiment using the finite-volume computa-
tional-fluid-dynamics code FLUENT. A large ganglion of the non-wetting phase was inserted
symmetrically between two adjacent pore bodies, completely filling the throat as indicated
in Fig. 6 (top), in the absence of external forces, and the temporal evolution of the shape of
the drop, driven by capillary forces alone, was computed. The ganglion was surrounded by
a continuous wetting phase.

The simulations were run in FLUENT’s Volume of Fraction (VOF) axisymmetric model
for the immiscible multi-phase flow. The mesh-generation software GAMBIT was used
to construct a 65 (radial)×481 (axial) mesh on which the axial and radial momentum,
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Fig. 6 Computational-fluid-
dynamics simulation of the
evolution of the shape of a
ganglion of non-wetting fluid
initially filling the pore
constriction. Time in
microseconds is indicated beside
each frame

continuity, and volume-fraction equations were solved. The following solution schemes for
the VOF model were applied: the PREssure STaggering Option (PRESTO) for pressure
interpolation, the second-order discretization for the volume-fraction equation, the Pres-
sure Implicit with Splitting of Operators (PISO) scheme for pressure–velocity coupling,
and the second-order upwind discretization for the momentum equations. The segregated
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Fig. 7 Dependence of the time
to snap-off on the tube
wavelength (λ = 2L)
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solver provided by FLUENT solves the governing equations sequentially. Grid spacing
was non-uniformly distributed in the radial direction to provide finer resolution near the
wall, and was uniform in the axial direction. The flow was assumed incompressible, and
the no-slip boundary condition was applied at the wall. The density and viscosity of water
were 998 kg/m3 and 10−3 Pa s, and the density and viscosity ratios of unity between oil and
water were assumed. The interfacial tension was 0.0345 N/m. Grid refinement studies were
performed to ensure that the computed profiles and times to break-up were grid-indepen-
dent. The total time to compute Fig. 6 and similar results was about 20 h on a 2.4-GHz
workstation.

The sinusoidal tube consisted of six complete periods (not shown in Fig. 6) with rmax

and rmin of 0.03 and 0.01 mm, respectively. A water film of uniform thickness of 0.0025 mm
(one-fourth of rmin) separated the oil from the pore walls at the start of the simulations.

From Eq. 6 for the given values of rmax and rmin, taking the thickness of the wetting
film into account, the spontaneous break-up was expected at wavelengths λ> 2π[(0.03 −
0.0025)(0.01 − 0.0025)]1/2 ≈ 0.0902 mm. A series of simulations were run for the values
of λ bracketing this presumed snap-off threshold to observe the range of transition from
no break-up to break-up, as summarized in Table 1. The numerically calculated snap-off
took place between λ of 0.1008 and 0.1016 mm. Taking their average of 0.1012 mm, this
wavelength is 0.0110 mm, or about 12%, larger than the theoretical prediction, which can be
viewed as a reasonable agreement. This fully dynamic simulation corroborates the geometric
argument that the conditions for the break-up, established by criterion (6), remain valid even
though the criterion strictly applies to the onset of instability when the collars only start to
form.

Figure 6 illustrates the entire process of choke-off, computed for the wavelength of
0.12 mm. The calculated time to break-up (complete separation of the two satellite drops) is
82 µs. A complete computed movie of the process is available from the mpeg file attached
(see electronic supplement to the paper).

We also investigated the dependence of the time to break-up on the tube wavelength
(within the range where it occurred) and the viscosity ratio between the two phases. As
Fig. 7 illustrates, this time decreases steeply with increasing wavelength and then levels off.
This behavior can be qualitatively understood in terms of the pressure difference (Eq. 5) that
drives the snap-off. For fixed rmax and rmin, the pressure difference increases quickly with
increasing wavelength, with the quadratic dependence on L , leading to quicker break-up.
When the third term in the brackets of Eq. 5, however, becomes sufficiently small compared
to the sum of the first two terms, the pressure difference levels off.
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Table 1 Numerical testing of the
static break-up criterion

Wavelength (mm) Break-up occurred

0.1600 Yes

0.1520 Yes

0.1440 Yes

0.1360 Yes

0.1280 Yes

0.1200 Yes

0.1120 Yes

0.1080 Yes

0.1056 Yes

0.1040 Yes

0.1024 Yes

0.1016 Yes

0.1008 No

0.1000 No

0.0984 No

0.0960 No

0.0920 No

0.0902 No

0.0890 No

Fig. 8 Dependence of the time
to snap-off on the viscosity ratio
between the drop and the
suspending phase (λ = 0.12 mm)
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The dependence on the viscosity ratio between the drop and the suspending phase is illus-
trated in Fig. 8, for the wavelength of 0.12 mm. The viscosity of the wetting phase is always
kept at 10−3 Pa s. The observed near-linear increase in the time with increasing viscosity of
the drop phase could be expected, as, for the same driving forcing, the deformation is slower
for the more viscous drop. One nevertheless should keep in mind that, although Figs. 7 and
8 show the specific dependencies, the values of the time to snap-off can be expected to vary
by orders of magnitude depending on the initial thickness of the water film and the values of
rmax and rmin (e.g., Gauglitz and Radke 1990, their Fig. 12). Computational restrictions have
limited so far our further exploration of the parameter space; it should be kept in mind that
one point in either Figs. 7 and 8 or Table 1 requires at least several hours of CPU time.
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Table 2 Summary of published results on break-up observation in sinusoidal capillary tubes

Type of study λ
2π

√
rminrmax

Static criterion
satisfied?

Snap-off observed?

Tsai and Miksis (1994) Numerical model 0.38, 0.45, 0.50, 1.0 No No at small Ca

Hemmat and Borhan (1996) Experiment 1.3 Yes Yes

Olbricht and Leal (1983) Experiment 0.71 No No at small Ca

Martinez and Udell (1989) Numerical model 0.71, 0.92 No No

Gauglitz and Radke (1990) Numerical
model and
experiment

4.5, 5.7, 7.1 Yes Yes

7 Analysis of Published Results

As indicated in Introduction, several studies investigated the immiscible flow and choke-off
of non-wetting fluids in sinusoidally constricted single tubes, albeit without addressing a
unifying geometrical condition for the spontaneous choke-off to occur. Our intention is to
verify if these observations can be understood through the break-up criterion (6).

Table 2 summarizes the results of published break-up observations; it also indicates in
column 2 whether this was a theoretical or experimental work. As shown in Table 2 not all
investigations observed an actual break-up, or the latter happened under certain conditions
only. To put all the results in a common perspective, we calculated the ratio λ/

(
2π

√
rminrmax

)
from criterion (6) for each of the studies (some presented results for several ratios), which are
shown in column 3. Recall that the snap-off should be observed if λ/

(
2π

√
rminrmax

)
> 1.

Column 4 then simply states if this inequality was satisfied, and the last column indicates if
the snap-off was or was not observed.

One can see that the results of Table 2 are consistent with the static break-up criterion, in
that the studies in which the inequality was not satisfied did not document the snap-off. The
only deviations from this rule occur in the results reported by Olbricht and Leal (1983) and
Tsai and Miksis (1994). Specifically, in these two studies, the criterion was not satisfied, and
the snap-off was not observed at small capillary numbers but it did occur at large capillary
numbers. Olbricht and Leal (1983) reported no break-up for Ca < 0.08, and Tsai and Miksis
(1994) for Ca < 0.03.

In explaining these deviations, one should recall that significant elongation of the ganglia
of non-wetting phase moving through capillary channels is observed at large capillary num-
bers, increasing the thickness of the wetting film in the constrictions and thereby reducing
the effective value of rmin, facilitating the snap-off. A snap-off that is observed at greater
capillary numbers, even if the static criterion is not satisfied, can thus disappear at smaller
ones. An example of such a transition is given by Tsai and Miksis (1994, their Figs. 8 and 9).
In this example, the same ganglion experienced a snap-off at Ca = 0.1 but did not break at
Ca = 0.05. Note that the static criterion was not satisfied (Table 2). Another factor for real-
istic systems is the length of the oil phase. The snap-off, being a dynamic process, requires
a finite time to develop, through the growth of the wetting collar in the constriction that
eventually chokes-off the oil. Even if the snap-off is allowed by the geometry, it may not
actually occur due to a short residence time of oil in the constriction if the length of the oil
phase is sufficiently small. For instance, in the example of Tsai and Miksis, the choke-off
that was geometrically allowed at Ca = 0.1 because of the sufficient thickness of the water
film in the throat (small rmin), was inhibited again at Ca = 0.2, because the increased flow
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rate of the oil ganglion made its residence time in the throat too short. On the other hand,
the residence time could be increased by simply increasing the length. An example of this
kind is also discussed by Tsai and Miksis (1994, their Figs. 9 and 11). The ganglion did
not break at Ca = 0.05 for the reasons already considered, while a longer ganglion did for
the same capillary number. The snap-off in large-capillary-number systems thus becomes
the result of a trade-off between the thickness of the water film and the oil-phase residence
time: with growing Ca, the film in the throat is thicker but the residence time is shorter. Note
that capillary numbers in oil-recovery applications are much smaller, on the order of 10−6 to
10−8 (e.g., Melrose and Brandner 1974, p. 58), which makes the static criterion universally
applicable to them.

8 Conclusion

Capillary-pressure analysis at the crests and troughs of single channels with sinusoidal geom-
etry filled with a non-wetting fluid shows that the pressure at these locations typically con-
trols the spontaneous, surface tension-driven flow. Formulation of the geometric condition
at which the capillary-pressure peaks at the troughs of the profile (the necks of the constric-
tions) then leads to a purely geometric criterion for the spontaneous break-up at the necks
in form of Eq. 6. In the limiting case of cylindrical streams with a free boundary and cylin-
drical core-annular flows, this criterion reduces to the condition for the occurrence of the
Plateau-Rayleigh instability. If the opposite inequality is satisfied, it becomes the condition
for the dissipation of the disturbance imposed by the solid wall. The pressure analysis for
a non-wetting fluid invading a pore body should only be modified to include the presence
of an additional interface (the invading meniscus), with the distinction made between the
geometries in which this meniscus intersects and does not intersect the wall of the pore.

Criterion (6) explains how the snap-off mechanism described by Roof (1970) can lead
to the break-up of continuous non-wetting core streams in some periodic channels but not
in the others, a contentious point having received no earlier explanation in the literature. It
brings to the forefront the fact that the channel’s wavelength, in its relation to the minimum
and maximum radii, and not the radii alone, is the key controlling factor. We have also placed
the derivation of the criterion on a more rigorous physical basis justifying why the pressure
in the wetting film could be for this purpose considered constant, which allows to use the
pressure gradients in the core alone as those driving the snap-off.

This geometry-controlled condition for the fluid break-up, which has never appeared in
the literature before, is valid at small capillary numbers and is validated in a computational
experiment. It also provides a unifying approach to explaining the results of various published
experimental and theoretical studies of immiscible flow in single sinusoidal channels, both
at small and large capillary numbers.

Acknowledgments This study was supported by the National Science Foundation and the Petroleum
Research Fund. Proper acknowledgment is made to the donors of the American Chemical Society Petro-
leum Research Fund.

Appendix A: Principal Curvatures at an Arbitrary Point on the Channel Surface

The normal curvatures of a surface of revolution such as one depicted in Fig. 1 are not as
obvious as they may seem. One (in the plane of Fig. 1) is clearly the curvature of the sinu-
soidal wall profile (1). However, the orthogonal normal cross-sections of the channel wall
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(in the plane perpendicular to Fig. 1) are not circles except at the crests and the troughs; their
curvatures are therefore not evident and should be obtained from the general expressions of
differential geometry.

To calculate the principal curvatures of the surface of revolution in Fig. 1, it is convenient
to recast it in parametric form using Eq. 1,

x(u, v) = rmax

[
1 + 1

2

(
rmin

rmax
− 1

) (
1 + cos π

u

L

)]
cos v, (A-1a)

y(u, v) = rmax

[
1 + 1

2

(
rmin

rmax
− 1

) (
1 + cos π

u

L

)]
sin v, (A-1b)

z(u, v) = u. (A-1c)

The principal curvatures can then be found as the roots k1,2 of the characteristic equation

(L − k E)(N − kG) − (M − k F)2 = 0, (A-2)

where E, F, G, L , M, and N are the coefficients of the first and second fundamental differ-
ential quadratic forms (Korn and Korn 1968, Eqs. 17.3–22). Using Eq. A-1, these coefficients
can be calculated as follows (Korn and Korn 1968, formulae 17.3–9 and 17.3–19):

E(u, v) ≡
(

∂x

∂u

)2

+
(

∂y

∂u

)2

+
(

∂z

∂u

)2

= 1 + π2r2
max

4L2

(
rmin

rmax
− 1

)2

sin2 π
u

L
, (A-3a)

F(u, v) ≡ ∂x

∂u

∂x

∂v
+ ∂y

∂u

∂y

∂v
+ ∂z

∂u

∂z

∂v
= 0, (A-3b)

G(u, v) ≡
(

∂x

∂v

)2

+
(

∂y

∂v

)2

+
(

∂z

∂v

)2

= r2
max

[
1 + 1

2

(
rmin

rmax
− 1

) (
1 + cos π

u

L

)]2

,

(A-3c)

L(u, v) ≡ 1√
EG − F2

∣∣∣∣∣∣∣∣∣∣∣∣

∂2x

∂u2

∂x

∂u

∂x
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∂2z

∂u2
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∂u

∂z
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∣∣∣∣∣∣∣∣∣∣∣∣

=
π2r2

max
2L2

(
rmin
rmax

− 1
) [

1 + 1
2

(
rmin
rmax

− 1
) (

1 + cos π u
L

)]
cos π u

L√
EG

, (A-3d)

M(u, v) ≡ 1√
EG − F2

∣∣∣∣∣∣∣∣∣∣∣∣
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∂u∂v

∂y

∂u

∂y

∂v

∂2z

∂u∂v

∂z

∂u

∂z

∂v

∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (A-3e)

N (u, v) ≡ 1√
EG − F2

∣∣∣∣∣∣∣∣∣∣∣∣
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Fig. A-1 Radius of curvature
OA = 1/k2

=
r2

max

[
1 + 1

2

(
rmin
rmax

− 1
) (

1 + cos π u
L

)]2

√
EG

= G√
EG

=
√

G

E
. (A-3f)

Because F(u, v) = 0 and M(u, v) = 0, the characteristic equation simplifies to
(L − k E)(N − kG) = 0, from which the roots are k1 = L/E and k2 = N/G.

Let us first consider the root k2. To find its specific expression, it is useful to calculate the
derivative of Eq. 1,

r ′(z) = πrmax

2L

(
1 − rmin

rmax

)
sin π

z

L
, (A-4)

and notice that E(u, v) = 1 + r ′2(z) and G(u, v) = r2(z), where r(z) is defined by Eq. 1.
We thus obtain

k2(z) = N

G
=

√
G/E

G
= 1√

G E
= 1

r(z)
√

1 + r ′2(z)
. (A-5)

From Fig. A-1, it is seen that, since tan θ = r ′(z), the quantity in the denominator of
(A-5) is the radius OA of the sphere with the center on the z-axis, inscribed in the channel
and tangent to the wall at point A (see Eq. 8). OA is therefore the radius of curvature. Due to
axial symmetry, we conclude that k2 represents the curvature of the normal section at point A
perpendicular to the plane of Fig. A-1. At the crests and troughs, it naturally reduces to rmax

and rmin, respectively. The second (orthogonal) normal section therefore coincides with the
sinusoidal profile in Fig. A-1. Its curvature k1 can be directly calculated from Eq. 1 without
even resorting to the general Eq. A-2:

k1(z) = r ′′
(
1 + r ′2)3/2 =

π2rmax
2L2

(
1 − rmin

rmax

)
cos π z

L(
1 + r ′2)3/2 , (A-6)

where r ′(z) is defined in Eq. A-4.
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The sum of the principal curvatures to be used in the capillary-pressure calculation in
Eq. 2 becomes

k2(z) + k1(z) = 1√
1 + r ′2(z)

⎡
⎣ 1

r(z)
−

π2rmax
2L2

(
1 − rmin

rmax

)
cos π z

L

1 + r ′2(z)

⎤
⎦ , (A-7)

where the sign of the second term is chosen in such a way that the term is positive under the
“convex” surface, correctly leading to an increase in the capillary-pressure.

Note that the same expression, with the signs appropriately chosen, was used without
derivation by Gauglitz and Radke (1988, Eq. 4) (in dimensionless form) and by Atherton and
Homsy (1976, p. 76) with the derivation based on less transparent tensorial formalism. We
have provided the derivation that could be easily reproduced (see, for example, Eqs. 12–13)
for any parametrically defined surface.

Appendix B: More Accurate Analysis: Capillary-Pressure Distribution
Along the Channel

Full Expression for the Capillary Pressure and Locations of the Intermediate Extrema

Using (A-7) in Eq. 2, we obtain a continuous distribution of the capillary-pressure along the
channel,

Pca(z) = σ√
1 + r ′2(z)

⎡
⎣ 1

r(z)
−

π2rmax
2L2

(
1 − rmin

rmax

)
cos π z

L

1 + r ′2(z)

⎤
⎦ . (B-1)

By taking the derivative of Eq. B-1 and equating it to zero, the locations of all extrema
in the capillary-pressure can be found. Taking into account (1) and (A-4) and omitting the
intervening straightforward but tedious algebra, the derivative of (B-1) can be represented as
a product of two terms, �1(z) and �2(z), leading to two decoupled equations,

�1(z) ≡ sin π
z

L
= 0, (B-2)

�2(z) ≡ π4r4
max

8L4

rmin

rmax

(
2 − rmin

rmax

) (
1 − rmin

rmax

)2

cos4 π
z

L

−3π4r4
max

16L4

(
1 + rmin

rmax

) (
1 − rmin

rmax

)3

cos3 π
z

L

+π2r2
max

L2

(
1 − rmin

rmax

)2
[

1 + π2rmaxrmin

2L2 + 3π2r2
max

8L2

(
1 − rmin

rmax

)2
]

cos2 π
z

L

−3π2r2
max

4L2

(
1 − rmin

rmax

) (
1 + rmin

rmax

) [
1 + π2r2

max

4L2

(
1 − rmin

rmax

)2
]

cos π
z

L

−
(

1 − π2rminrmax

L2

) [
1 + π2r2

max

4L2

(
1 − rmin

rmax

)2
]

= 0. (B-3)

Equation B-2 has roots at z/L = ± 0, 1, 2, …, corresponding to the crests and the troughs
of the profile (Fig. 1). These locations contain the extrema of the capillary-pressure, which
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was intuitively clear in the derivation of criterion (6) but has now been proved. On the other
hand, the capillary-pressure may also have additional extrema at intermediate points z deter-
mined by the real roots of the quartic equation (B-3). Solving such an equation would be a
formidable and perhaps unnecessary task. For a wide range of parameter combinations, one
can ascertain the character of the solutions and the values of the capillary-pressure at them
by means of an approximate analysis.

First, if rmin and rmax are close enough that their ratio is near unity, Eq. B-3 reduces to

1 − π2rminrmax

L2 = 0.

If we exclude the particular combination in which π2rminrmax = L2 (corresponding to
constant Pca along the channel), this equation is never satisfied, meaning that there are no
intermediate extrema in the capillary-pressure.

Second, Eq. B-3 also significantly simplifies if rmin << rmax. It is then re-written as

−3π4r4
max

16L4 cos3 π
z

L
+ π2r2

max

L2

(
1 + 3π2r2

max

8L2

)
cos2 π

z

L

−3π2r2
max

4L2

(
1 + π2r2

max

4L2

)
cos π

z

L
−

(
1 − π2r2

max

L2

rmin

rmax

)(
1 + π2r2

max

4L2

)
= 0,

(B-4)

which can further be reduced if we notice that coefficients are about the same before
cos π(z/L) and cos2 π(z/L) and consequently neglect the quadratic term,

−3π4r4
max

16L4 cos3 π
z

L
− 3π2r2

max

4L2

(
1 + π2r2

max

4L2

)
cos π

z

L

−
(

1 − π2r2
max

L2

rmin

rmax

) (
1 + π2r2

max

4L2

)
= 0. (B-5)

Here, we can still distinguish three useful cases: rmax << L , rmax ∼ L , and rmax >> L .
The simplest to analyze is rmax << L , as in this case Eq. B-5 reduces to −1 = 0 and is
never satisfied. No intermediate extrema exist therefore for the combinations {rmin <<

rmax, rmax << L} (the braces indicate the simultaneous conditions). In the case rmax >> L ,
Eq. B-5 becomes

− 3π4r4
max

16L4

(
cos3 π

z

L
+ cos π

z

L

)
− π2r2

max

4L2

(
1 − π2r2

max

L2

rmin

rmax

)
= 0, (B-6)

which, if we again neglect the higher power of cosine, transforms to

3π2r2
max

4L2 cos π
z

L
+

(
1 − π2r2

max

L2

rmin

rmax

)
= 0. (B-7)

The roots of Eq. B-7 describing the coordinates of the intermediate extrema are

cos π
z

L
=

π2r2
max

L2
rmin
rmax

− 1

3π2r2
max

4L2

, {rmin << rmax, rmax >> L} . (B-8)
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Finally, if rmax ∼ L , we can re-cast the left-hand side of Eq. B-5 approximately as
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) (
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+ cos π

z

L

)
− 1, (B-9)

which, with the same degree of approximation, transforms Eq. B-5 to

3π2r2
max

4L2 cos π
z

L
+ 1 = 0. (B-10)

The roots of Eq. B-10 describing the coordinates of the intermediate extrema are

cos π
z

L
= − 1

3π2r2
max

4L2

, {rmin << rmax, rmax ∼ L} . (B-11)

Note that Eq. B-11 can be obtained from Eq. B-8 by setting rmax ∼ L in the latter. We
therefore can combine them in one approximate equation for the intermediate extrema,

cos π
z

L
=

π2r2
max

L2
rmin
rmax

− 1

3π2r2
max

4L2

, {rmin << rmax, rmax >> L or rmax ∼ L} . (B-12)

Capillary Pressure at the Intermediate Extrema

As we have found out, there are no extrema in the capillary-pressure profile along the chan-
nel except those at the troughs and the crests in the cases of rmin ≈ rmax and {rmin <<

rmax, rmax << L}. These are the cases of a smoothly varying profile. There are, however,
intermediate extrema at least at locations defined in Eq. B-12 for {rmin << rmax, rmax >> L
or rmax ∼ L}. The capillary-pressure at these extrema should be compared to that at the
troughs and crests to see if the former may dominate the flow.

For the case of rmin << rmax under consideration, the exact expression (B-1) for the
capillary-pressure can be simplified similar to the transition from (B-3) to (B-4). Then the
result can further be reduced, as previously, if we neglect cos2 π(z/L) compared to unity.
Omitting the intervening algebra, we arrive at

Pca(z) = 2σ cos π z
L

rmax

√
1 + π2r2

max
4L2

⎡
⎣ 1(

1 − cos π z
L

)
cos π z

L

−
π2r2

max
4L2

1 + π2r2
max

4L2

⎤
⎦ . (B-13)

Considering that rmax >> L or rmax ∼ L , the latter expression is approximately

Pca(z) = 2σ cos π z
L

rmax

[
1(

1 − cos π z
L

)
cos π z

L

− 1

]
≈ 2σ

rmax

(
1 − cos π

z

L

)
, (B-14)

where we still have neglected cos2 π(z/L) compared to cos π(z/L), keeping the same approx-
imation as before. Equation B-14 is the approximate expression for Pca for the case in which
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Eq. B-12 is valid. Upon substituting (B-12) into (B-14), the capillary-pressure at the inter-
mediate extrema is obtained as

Pca(z) = 2σ

rmax

⎛
⎝1 −

π2r2
max

L2
rmin
rmax

− 1

3π2r2
max

4L2

⎞
⎠ . (B-15)

Further, for the rmin << rmax case of interest, the capillary-pressure at the trough (Eq. 4)
simplifies to

P trough
ca = σ

rmax

(
rmax

rmin
− π2r2

max

2L2

)
. (B-16)

Under the same condition, the capillary-pressure at the crest (Eq. 3) equals

Pcrest
ca = σ

(
1

rmax
+ π2rmax

2L2

)
= σ

rmax

(
1 + π2r2

max

2L2

)
,

which, again considering that rmax >> L or rmax ∼ L , approximately becomes

Pcrest
ca = σπ2rmax

2L2 . (B-17)

We can now estimate the values of the pressure at the intermediate extrema relative to that
in the troughs and crests (B-16 and B-17).

For example, let us first take the ratio of Eqs. B-16 to B-15,

P trough
ca

P interm
ca

=
rmax
rmin

− π2r2
max

2L2

2

(
1 −

π2r2
max

L2
rmin
rmax

−1

3π2r2
max

4L2

) =
π2

(
2L2

π2r2
max

− rmin
rmax

)

4 rmin
rmax

L2

r2
max

(
1 − 4

3
rmin
rmax

+ 4L2

3π2r2
max

) , (B-18)

which, again using the conditions {rmin << rmax, rmax >> L or rmax ∼ L}, is approxi-
mately

P trough
ca

P interm
ca

=
2L2

r2
max

− π2 rmin
rmax

4 rmin
rmax

L2

r2
max

. (B-19)

This ratio can only be zero if π2rminrmax = 2L2. If we exclude this specific case, two
scenarios are possible. At {rmin << rmax, rmax ∼ L}, we have

P trough
ca

P interm
ca

≈
2L2

r2
max

4 rmin
rmax

L2

r2
max

= 1

2 rmin
rmax

>> 1.

At {rmin << rmax, rmax >> L}, we have

P trough
ca

P interm
ca

≈ − π2 rmin
rmax

4 rmin
rmax

L2

r2
max

= − π2

4 L2

r2
max

<< −1.

In all cases except the excluded one, the absolute value of P trough
ca is much greater than that

of P interm
ca , and the effect of the intermediate extrema can be neglected.
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Let us now take the ratio of (B-17) to (B-15),

Pcrest
ca

P interm
ca

=
π2r2

max
2L2

2

(
1 −

π2r2
max

L2
rmin
rmax

−1

3π2r2
max

4L2

) = 3π2

4 L2

r2
max

(
3 − 4 rmin

rmax
+ 4L2

π2r2
max

) . (B-20)

Under the conditions {rmin << rmax, rmax >> L or rmax ∼ L}, it simplifies to

Pcrest
ca

P interm
ca

= π2

4 L2

r2
max

. (B-21)

At rmax ∼ L , Pcrest
ca /P interm

ca > 1, and at rmax >> L , Pcrest
ca /P interm

ca >> 1. In neither case
the capillary-pressure at the intermediate extrema dominates the flow: it is either of the same
order of magnitude than that at the crests or much smaller.

We conclude that, in either of the parameter combinations considered (rmin ≈ rmax or
rmin << rmax) and any L , the intermediate extrema either do not exist or exist but do not
control the flow. Condition (6) for the spontaneous break-up of the non-wetting fluid thus
remains valid even if the continuous pressure distribution along the fluid is taken into account.
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