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Summary
The organic fluids entrapped in pore constrictions by capillary
forces can be mobilized by the application of elastic-wave vibra-
tions because of the nudging effect, which allows quantitative
description. The model used for such calculations is a single-pore
channel with converging/diverging geometry, in which the organic
phase is entrapped as a continuous blob occupying several adjacent
pores. The ganglion is released from the constriction when the
wave-acceleration amplitude exceeds a threshold value that scales
with the frequency as A/f�a constant. This means that the wave
intensity is the only required criterion for the release. In an en-
semble of ganglia, the percentage of them mobilized and, there-
fore, the flow rate increases with the amplitude and decreases with
frequency. The vibrations are inefficient for mobilization if the
frequency is sufficiently high. The typical vibratory amplitudes
required to produce noticeable increases in the average flow rates
are on the order of 10 m/s2 and much higher at the frequencies in
excess of approximately 10 Hz. These estimates provide guidelines
for the possible applications of elastic-wave stimulation of or-
ganic-fluid flow in porous environments.

Introduction
A great deal of attention in recent years has been devoted to the
possibility of enhanced petroleum recovery using elastic waves
and vibrations (Beresnev and Johnson 1994, Hilpert et al. 2000,
Roberts et al. 2001 and 2003, Dobronravov 2002, Poesio et al.
2002). Nonetheless, the difficulty of the method has been insuffi-
cient understanding of the physical mechanism by which the low-
frequency vibrations could mobilize the entrapped organic fluids.
Hilpert et al. (2000) calculated the frequencies of pulsing pressure
in an axisymmetric channel with a sinusoidal profile that maxi-
mized the volume of the displaced nonwetting phase; however, no
explicit mobilization criteria were established. Several studies re-
cently have proposed a specific oil-release mechanism showing
how vibrations overcome capillary entrapment that holds the fluids
in place (Graham and Higdon 2000, Iassonov and Beresnev 2003,
Beresnev et al. 2005), which allowed explanation of miscellaneous
observations of the enhancement in organic-phase flow by vibra-
tions under field and laboratory conditions. This mobilization
mechanism, as summarized by Beresnev et al. (2005), can be
represented as follows.

The conditions for the capillary entrapment of nonwetting flu-
ids in pores of variable diameter (the so-called Jamin effect) of
course have been understood since the 1930s (Taber 1969). The
residual fluids are immobilized in the form of isolated blobs (gan-
glia) because of an excess capillary pressure (Pc

+) building up on
the inner side of the downstream meniscus as it enters a narrow
pore constriction, relative to the upstream meniscus (Pc

−) (water-
wet porous media will be assumed) (Payatakes 1982). Referring to
Fig. 1, the oil ganglion can move if the absolute pressure in the oil
at the left meniscus (Pw

++�Pw+Pc
−) is greater than that at the right

meniscus (Pw
++Pc

+), where Pw is the pressure in the water phase and
Pc

± is the capillary pressure determined from the Laplace equation.
Equating the two leads to �P0w�Pc

+−Pc
− as the threshold exter-

nal pressure drop in the water above which the ganglion is mo-
bile (Taber 1969). It follows that the external gradient in the sur-

rounding water needs to exceed a certain unplugging threshold
�P0w to carry the ganglion through (Taber 1969, Melrose and
Brandner 1974).

This process is represented schematically on a flow-force dia-
gram in Fig. 2. The solid line depicts the oil-phase flow for va-
rious values of the external static forcing. Under an external gra-
dient �Psw<�P0w, the system resides in static equilibrium. The
flow can commence only when �Psw exceeds the unplugging
threshold �P0w.

Suppose that the flow is plugged (�Psw<�P0w). In a cylindrical
channel, the application of longitudinal vibrations of the wall
(without a loss of generality, we consider the motion parallel to the
pore axis) is equivalent to the addition of an external (inertial)
oscillatory body force Posc to the constant gradient,

Posc = �pa, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)

where �p is the density of the oil (petroleum) and a is an instan-
taneous amplitude of the acceleration of the wall (Biot 1956). One
period of the oscillatory forcing adding to the gradient is shown in
Fig. 2. When this forcing acts along the gradient and the total
�Psw+Posc exceeds �P0w, instant unplugging occurs (total forcing
in the flow zone in Fig. 2). During the unplugged period, if a
ganglion’s leading meniscus moves beyond the narrowest point in
the constriction, the magnitude of the restraining capillary force
starts to decrease progressively. As a result, the blob accelerates
upon exiting the constriction (Beresnev et al. 2005). This explains
why the application of the reversed polarity of vibrations, opposing
the gradient, cannot return the blob to its original position. The
minimum amplitude for the vibrations needed to mobilize the blob
is set by the condition �Psw+Posc>�P0w.

Because the leading meniscus must reach the throat of the
constriction to become mobilized, the period of vibrations should
be long enough (for a given amplitude) to allow sufficient time for
this movement. Frequencies above a certain threshold value will
fail to mobilize the blob. We infer that, in addition to the existence
of the minimum-amplitude threshold for the onset of mobilization,
there will also be a maximum-frequency threshold.

This mechanism of residual-organic-phase mobilization by
elastic waves and vibrations allows quantitative description of the
flow-enhancement effect produced by seismic waves of particular
amplitudes and frequencies, which would be of direct practical
interest and has so far been lacking. Performing such calculations
is the goal of this paper.

Model Formulation
Geometry of the Pore Channel. The model we consider is a
capillary tube of circular cross section with the radius varying with
length as

R�z� =
1

2 ��rmax + rmin� + �rmax − rmin� cos�2�z

lpore
��, . . . . . . . . (2)

where z is the axial coordinate, rmin and rmax are the minimum
(pore-throat) and maximum (pore-body) radii of the channel, and
lpore is the length of a single pore (Fig. 1). This model represents
a periodic structure of pore elements with converging/diverg-
ing geometry, capturing the crucial factor responsible for the cap-
illary entrapment of nonwetting fluids in porous space. The fol-
lowing values of channel geometry will be used: rmin�0.025 mm,
rmax�0.05 mm, and lpore�0.5 mm.
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Modeling Vibrations. To simulate the effect of vibrations, we use
the oscillating body force Posc (Eq. 1) acting on the fluid. The
volume-average value of this force is

Posc = �A�p� cos�2�ft�, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)

where A and f are the acceleration amplitude (hereafter simply
referred to as the amplitude) and the frequency of vibrations, re-
spectively. For the density of the pore-filling fluid, a typical value
for crude oil of 800 kg/m3 will be assumed.

Interfaces and Capillary Forces. The ganglion of nonwetting
fluid (oil) is represented by a finite volume of oil situated within
the pore channel, bound at both ends by water/oil interfaces (me-
nisci) (Fig. 1). The interfaces are assumed to be spherical, with the
radius of curvature uniquely defined by the position of the contact
line on the pore wall and the contact angle. This assumption is
valid only in the quasistatic case, the validity of which is addressed
in the next subsection. A zero-contact angle will be assumed (com-
plete water-wetting of the wall, with oil being the nonwetting
fluid), and the contact-angle hysteresis will not be considered.

Under these conditions, the capillary pressures Pc on the inner
(blob) side of each meniscus at any given moment are

Pc
± =

2�

rm
± , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)

where � is the surface tension (the value of ��20 mN/m will be
used) and rm is the radius of curvature of the meniscus (Fig. 1).

We postulate that the length of the blob L is significantly
greater than the length of a single pore lpore. In this case, the end
effects (such as the flow in the vicinity of the interfaces) can be
neglected in calculating the dynamics of the entire blob.

Quasistatic Approach. We apply a quasistatic approach to the
solution (i.e., treat the flow within the model at any time as steady-
state). The limits of applicability of this assumption can be seen if
we consider the problem of a startup flow in a circular channel
(Johnson 1998). The flow in response to a step forcing approaches
its steady state over a characteristic time scale that is often called
the viscous-diffusion time,

�vd =
�r2

�
, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5)

where r is the radius of the channel and � is the dynamic viscosity.
Substituting the maximum radius of 0.05 mm and fluid viscosity
��5 mPa�s, we obtain the viscous diffusion time of 0.0004 sec-
onds. This value should be significantly smaller than the scale of
any time-dependent process in the model, which in our case is
vibration. For the highest vibratory frequency we use (40 Hz), the
period of vibration T is 0.025 seconds. We see therefore that the
condition �vdKT is always satisfied, justifying the use of the qua-
sistatic approach.

The time scale (Eq. 5) can also be construed as the character-
istic response time of the fluid to a vibratory forcing. Vibrations

with TK�vd will simply fail to affect the fluid because the fluid
will not have sufficient time to respond.

The quasisteady approach allows us to calculate the oil-flow
rate at any given moment on the basis of the conductivity C of the
channel, which will generally depend on the system geometry and
the current position of the interfaces. For Lklpore, we can neglect
the effects of the menisci position on the conductivity and calcu-
late the oil-flow rate Qp as an analog of Poiseuille flow with a
vibrational body force added. The absolute-pressure difference be-
tween the oil side at the left and right menisci in Fig. 1, driving the
gangl ion in the posi t ive direct ion of the z -axis , is
(Pw

++�Pw+Pc
−)−(Pw

++Pc
+)��Pw+Pc

−−Pc
+, where (Pw

++�Pw)−Pw
+ is

the external-pressure drop in the water phase. The same analogy is
used to derive the Washburn equation for the rate of capillary rise
(Dullien 1992). Assuming a constant pressure gradient, dividing
by L, and adding the external body force Posc leads to

Qp =
C

�p
�−

dPw

dz
+

Pc
− − Pc

+

L
+ Posc�, . . . . . . . . . . . . . . . . . . . . . (6)

where the conductivity depends only on the geometry of a single

pore,
dPw

dz
is the external-pressure gradient in the surrounding water

phase (the negative pressure gradient drives the fluid in the posi-
tive direction of the z-axis in Fig. 1), and Posc is the oscillatory
body force (Eq. 3). Note that the pressure differences in both the
oil and water phases have entered the derivation of Eq. 6. Because

Fig. 1—Geometry of the model pore channel and entrapped oil blob.

Fig. 2—Mechanism of the mobilization of entrapped organic
ganglion under the combined effect of external-pressure gradi-
ent and oscillatory forcing.
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of the assumption of a long blob and the resulting applicability of
Poiseuille flow, only the oil viscosity controls the flow rate.

In the absence of vibratory forcing, Qp�0 when −dPw/
dz�(Pc

+−Pc
−)/L, which is the condition for entrapment of Taber

(1969). The flow resumes when –dPw/dz exceeds this value.
The value of C was calculated numerically with the computa-

tional fluid-dynamics code Fluent™ (www.fluent.com). Using a
steady-state axisymmetric laminar-flow solver for the geometry of
a single pore (Eq. 2), and applying a pressure difference between
the inlet and the outlet of the pore, we obtained the single-phase
flow rate, which in turn was used to calculate the value of the
conductivity C�4.44×10−19 m4.

To justify the use of a constant conductivity, we also must
ensure that the flow in the channel is laminar at any time. This can
be achieved by calculating the Reynolds number (Johnson 1998)

NRe =
�pVpD

�p
, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7)

where Vp is the maximum oil velocity and D is the diameter of the
channel. Assuming the parabolic (Poiseuille) velocity profile, Vp

can be calculated as twice the average fluid velocity in the nar-
rowest part of the pore,

Vp = 2
Qp

�rmin
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8)

In naturally occurring porous media, the turbulence may be
observed for Reynolds numbers as low as 1 (Fetter 2001). Using
Eqs. 8, 7, and 6, we calculate that, to achieve Re�1, we would
need to apply a pressure gradient of approximately 106 Pa/m (here-
after, we refer to the absolute value of the pressure gradient for
simplicity). This value is very high and cannot be achieved in a
typical oilfield environment, except in close proximity to the well.
Our assumption of the laminar flow, therefore, is justified for the
types of applications we are considering.

Algorithm of Flow Calculation. From Eq. 6, the flow in the
model depends on the three types of forces acting on the blob: the

external pressure gradient
dPw

dz
, the capillary pressures on oil/water

interfaces inside the blob Pc
±, and the oscillating body force Posc

caused by vibration. As follows from the entrapment criterion, for
an arbitrary external-pressure gradient in the absence of vibration,
the oil flow is plugged as long as

−
dPw

dz
	

Pc
+ − Pc

−

L
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (9)

Considering that the right side of Eq. 9 will vary with the
menisci position, this equation assumes the maximum capillary
pressure difference Pc

+−Pc
− for all possible positions of the blob for

its given volume. This allows finding the static pressure gradient
needed to mobilize a particular oil blob, as well as the equilibrium
position of the menisci for any pressure gradient that is not suffi-
cient to mobilize the oil.

If the ganglion is mobile, we can calculate the flow rate with
Eq. 6. The calculations then proceed in time in a stepwise manner.
Knowing the current flow rate, we calculate the positions and
curvatures of the interfaces at the next time step, accounting for the
change in the cross section of the channel (Eq. 2) and the change
in radius of the menisci. An adaptive timestep selection algorithm
is employed, requiring that the timestep be significantly smaller
than the period of vibration and, at any given step, that the capil-
lary pressure not change by greater than a predefined threshold
(typically, less than 2.5%).

The following criteria were used to determine the result of each
simulation. The oil ganglion was considered immobile if its lead-
ing interface had not advanced beyond its last known maximum
position (along the pore axis z) for several periods of vibration.
The actual number of cycles considered varied from simulation to
simulation. Typically, though, the majority of entrapped ganglia
were either mobilized in only one or two periods or remained

immobile. The ganglion was considered mobile if the leading in-
terface had traveled a distance of one pore length or greater (be-
cause of periodic structure of the pore, this is a sufficient condi-
tion). Each simulation time could be limited by these criteria and
provide a simple yes/no answer, saying whether the oil was mobile
or not under the applied initial conditions. In the case of the av-
erage-flow calculation, the mobilization criterion was modified
slightly in that the required movement of the interface was ex-
tended to several pore lengths in order to improve the precision of
the result.

Results and Discussion
Presenting Results of Simulations. As seen in Eq. 9, in the case
of no vibration, the mobilization of the blob is simply a matter of
creating a sufficient pressure difference,

�P0w =
dPw

dz
L, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (10)

by the external gradient. It follows that, for a given gradient, the
longer ganglia will be mobile while the shorter ones will not
(Payatakes 1982). Also, the pressure difference required for the
mobilization will be an approximately periodic function of L (or
the ganglion volume) because the resisting capillary pressure im-
balance Pc

+−Pc
− is periodic with period lpore. This behavior can be

seen in Fig. 3, where the threshold difference �P0w is plotted
against the ganglion volume varying over one pore element. The
fate of the ganglion, therefore, will depend highly on slight varia-
tions in the ganglion volume within one pore. This variability
should be accounted for properly in the representation of the flow-
mobilization phenomenon.

A meaningful way of characterizing the fate of the blob (and
quantifying the mobilizing effect of vibration) on a macroscopic
level would then be to define it not for a ganglion of any particular
volume (or length) but for an ensemble of ganglia occupying the
range of lengths from L−lpore/2 to L+lpore/2. In the following, we
use the fraction of mobile ganglia over all ganglia in the ensemble.
An example of such a calculation is presented in Fig. 4, where the
fraction of mobile blobs is plotted vs. the external-pressure gradi-
ent. Each point on the curve is the value for an ensemble of 1,000
blobs with the macroscopic length of L�10 cm increasing in
uniform increments over one pore element. All ganglia are mobile
when the gradient exceeds the maximum capillary pressure differ-
ence Pc

+−Pc
− calculated for all lengths.

Amplitude Effect. This method and the statistical measure intro-
duced can be used to calculate the effect of vibration on the mo-
bilization of ganglia in the model. Since almost any pressure gra-
dient would be sufficient to mobilize a certain fraction of blobs of
particular length (Fig. 4), we assume in the following that, before
the start of vibrations, only immobile ganglia remain in the porous
medium, representing the residual-oil saturation. It then becomes
convenient to calculate the fraction of mobilized ganglia [i.e., the
number that have become mobilized as a result of vibratory stimu-
lation (MA) normalized by the total number of ganglia immobile
under the given pressure gradient without vibrations (M0)],

M* =
MA

M0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (11)

This result is shown in Fig. 5, where M* is plotted vs. ampli-
tude for several values of pressure gradient. As in Fig. 4, each data
point represents an ensemble of 1,000 volumes of the blobs with
L�(10±0.5 lpore) cm. The stimulation frequency is 10 Hz. It is
seen that the mobilization effect grows with amplitude.

The curves in Fig. 5 are informative, yet they are insufficient to
describe fully the vibratory mobilization because the effect will
also depend on the frequency and the ganglion length.

Frequency Effect. As stated in the Introduction, the mobilizing effect
of vibration, for a given amplitude, is expected to decrease with
increasing frequency. Only those blobs in the ensemble for which
the frequency is below the threshold value will be mobilized.
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Calculations corroborate the frequency dependence of the mo-
bilization effect. It is demonstrated in Fig. 6, where the fraction of
mobilized ganglia is plotted against frequency for several accel-
eration amplitudes A (the external gradient is 7050 Pa/m). Recall
that, at the pressure gradient of 7050 Pa/m, 50% of the ganglia are
trapped (Fig. 4). It is clear that the effect of vibration at a given
amplitude A ranges from full mobilization (100%) to no mobili-
zation (0%), depending on the frequency.

We also observe that, in the range of frequencies presented, the
amplitude required to mobilize a set fraction of ganglia appears to
increase almost linearly with the frequency. This dependence is
better illustrated in Fig. 7a, where the amplitude required for the
mobilization of a fraction of immobile oil is plotted against
frequency. The linear relationship is easily explained. As we

have pointed out, the blob’s leading meniscus must be carried
to the narrowest point of the constriction over one period of vi-
bration in order to be mobilized; for a blob of a given volume,
the required travel distance constitutes a certain fraction s of the
length of the pore. If the blob’s velocity is Vp, this leads to the
mobilization condition Vp T≈s lpore. Since Vp∼A, we obtain A/f∼s
lpore�constant, which is the pattern seen in Fig. 7a.

It stands to reason that there are frequency limits within which
this argument applies. At the high-frequency end, the linear de-
pendence between the mobilizing amplitude and the frequency will
hold as long as the condition of quasistatic approximation, �vdKT,
applies. At the other extreme, at sufficiently low frequencies, in-
cluding zero (static mobilizing forcing), the distance traveled over
one period will always exceed the length of the pore; as long as

Fig. 3—The effect of oil-ganglion volume on pressure difference required for the mobilization.

Fig. 4—The effect of external-pressure gradient on the mobilization of oil ganglia of length L=10 cm spanning the range of lengths
within one pore element.
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this is the case, the frequency effect will not be seen, and the linear
dependence will level off at the value corresponding to the static
mobilization forcing presented in Fig. 4. This behavior is demon-
strated in Fig. 7b obtained from the calculations. It shows that the
frequencies at which the leveling off occurs are extremely low (on
the order of one-hundredth of a Hz; they will scale as lpore

−1 ); for
practical purposes, this deviation from the A/f�constant depen-
dence could be ignored.

It follows that, in practice, one could conveniently characterize
the effect of vibration with one parameter, A or f, knowing that a
constant A/f leads to the same result. It is also important that this
ratio is related directly to the sound intensity, a measure of the
energy of the sonic wave used in acoustics,

I =
�sc

8�2 �A

f �2

, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (12)

where �s is the density of the solid and c is the wave-propagation
velocity. We then infer that another, physically deeper-rooted, way
of characterizing the effects of the amplitude and frequency would
be to use the intensity measure: the mobilizing effect of the fields
having the same intensity is the same. As follows from Fig. 7a, to
increase the effect, the intensity must be increased.

Ganglion-Length and Pressure-Gradient Effects. The effect of
the length of the entrapped ganglion on the mobilization, for a
given gradient, will be to scale proportionally the required ampli-
tude (intensity), as can be understood from Fig. 2 and Eq. 9.
Considering that the maximum Pc

+−Pc
− is approximately the same

for every length, a decrease in L will result in an increase in the
right side of Eq. 9 and, thus, in moving the static gradient �Psw

away from the mobilization threshold �P0w in Fig. 2. Conse-

Fig. 6—The effect of vibratory frequency on the mobilization of ganglia (L=10 cm) for several amplitudes under the external-
pressure gradient of 7050 Pa/m.

Fig. 5—The effect of vibration amplitude on the mobilization of oil ganglia of length L=10 cm. The frequency of vibrations is 10 Hz.
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quently, a proportionally larger Posc will be needed to unplug the
ganglion. Similarly, at larger pressure gradients and given L, the
same effect will be achieved at proportionally smaller vibration
amplitudes (intensities).

Vibration Effect on Flow Rate. We have so far discussed the
vibratory effect on the mobilization of oil ganglia. From the prac-
tical standpoint, it is also important to characterize the effect of
vibrations on the flow rate, which, for example, could be used to
predict an absolute increase in organic-fluid production. We again
present these results in terms of the mean flow rates, averaged over
oil ganglia with lengths changing in the range L±lpore/2.

The dependence of the average flow rate on the pressure gra-
dient (with no vibrations applied) for an oil blob of length L�10
cm is shown in Fig. 8. To emphasize the stimulating effect of
vibrations, it is convenient to normalize the enhanced flow rate
(with the vibrations applied) by that without vibrations, represent-
ing a relative increase in Qp,

Q*p =
QAp − Q0p

Q0p
, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (13)

where QAp is the rate under the vibrations with amplitude A and
Q0p is the rate without vibrations. This result is shown in Fig. 9,
where Qp* is plotted against the external gradient for different
values of A. Clearly, the relative mobilization effect increases with
amplitude. The peaks observed in the curves can be understood as
follows: For any given amplitude, the flow rate increases with the
increasing gradient as more and more blobs from the ensemble
become mobilized and start to flow. However, clearly, at the com-
bination of amplitude and gradient at which nearly all of the blobs
are already mobile, there is no possibility to increase the flow rate
any further, and the curve quickly drops to zero.

The effect of frequency on the flow rate will understandably
be controlled by the ratio A/f, as was the case for the fraction
of mobilized ganglia in Fig. 7a. This dependence is illustrated in
Fig. 10. The same flow-rate increase is achieved for a constant
value of the ratio.

Estimation of Realistic Seismic Effects. It would be interesting to
estimate the magnitude of residual-oil-mobilization effect that
could be expected under realistic field conditions. According to the
data available to the authors and from the authors’ experience, the

Fig. 7—The amplitude and frequency effect on the mobilization of entrapped ganglia (L=10 cm; �dP w

dz �=7050 Pa/m).

Fig. 8—The effect of external-pressure gradient on the average flow rate for the ganglia of L=10 cm spanning the range of lengths
within one pore element.
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existing nonexplosive borehole seismic-energy sources are capable
of creating maximum displacements at a distance of ∼300 m on the
order of 10−6 m at the central frequency of ∼100 Hz, providing an
estimate of maximum acceleration of ∼0.4 m/s2. According to Fig.
6, the mobilization effect at such amplitudes and frequencies could
be expected to be negligibly small except for the volume of the
reservoir immediately surrounding the borehole. We infer that
much more powerful sources would be needed to stimulate reser-
voir volumes within a few hundred meters. It is not within the
purview of this paper to suggest how this technically could be
achieved. It stands to reason, though, that a significant stimulation
effect could be achieved with the use of surface vibrators to stimu-
late the near-surface flow, which has direct implications for the
remediation of groundwater contaminated by entrapped organic
fluids (e.g., leaking gasoline tanks).

It should be noted that the conclusion about the magnitude of
accelerations needed to achieve a sizeable oil-recovery effect is
based on the model of entrapped-fluid liberation by vibrations
considered in this paper. If other mechanisms of liberation are
in play, the estimate of the required amplitudes possibly may
be relaxed. For example, Nikolaevskiy (2006) hypothesizes that
seismic waves in reservoir rock induce oscillations and friction
between grains that in turn produce ultrasound. Ultrasound re-
leases the gas dissolved in the oil to form microbubbles; the
bubbles stick to the oil droplets and cause their flotation. The
mechanism considered in our paper does not take this possible
phenomenon into account.

The mobilizing effect of ultrasonic waves with the frequency of
20 kHz in a sandstone core saturated with brine/residual oil was
recently reported by Tu et al. (2007). When the sound intensity

Fig. 10—The amplitude and frequency effect on the average flow rate of oil ganglia (L=10 cm; �dPw

dz �=7050 Pa/m).

Fig. 9—The increase in the average flow rate as a result of application of vibration with various amplitudes. The frequency is 10 Hz.
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exceeded a certain threshold, the residual oil started to exude from
the sample. Because of the jump-like dependence on the intensity,
the authors did not attribute this effect to changes in interfacial or
fluid properties by ultrasonic action. Qualitatively, this observation
is in line with the inference from our model that the amplitude
needs to surpass a prescribed threshold to liberate the oil. How-
ever, a step-like increase in the oil mobility when the threshold is
exceeded would be the case only for a single ganglion. While, for
an ensemble of blobs, (and channels with varying geometry), each
having its own threshold, a more gradual increase in the residual-
oil production (such as the one seen in Fig. 5) would rather be
expected, which was not observed by Tu et al. (2007). At this time,
it is difficult for us to explain their single observation. On the other
hand, the frequency of 20 kHz used, although seemingly high, is
still realistic to produce a tangible mobilization effect within the
model considered. Assuming a pore radius of 0.01 mm for a natu-
ral sandstone and the density and viscosity as previously noted, we
obtain �vd≈2 10−5 seconds. The period of ultrasound is T�5×10−5

seconds, showing that these two quantities are comparable and
the oil would have had sufficient time to respond to vibrations.
From this standpoint, the effect observed by Tu et al. (2007)
is entirely plausible even without the ultrasound changing the
fluid properties. However, estimating the amplitude needed to
initiate the stimulation, based on the mobilization condition
�Psw+Posc>�P0w, would be interesting but is not currently pos-
sible because of the absence of pore-size information.

Hamida and Babadagli (2007) also reported an increase in oil-
recovery rate from oil-saturated rock samples in the presence of a
40-kHz ultrasound. They, however, explain the results by the ul-
trasonic waves decreasing the interfacial tension between the oleic
and surrounding aqueous phase and reducing the films adsorbed on
pore walls, in line with the respective mechanisms reviewed by
Beresnev and Johnson (1994). Our present model deals with low-
frequency vibrations that do not change fluid properties and is not
applicable to the results reported in Hamida and Babadagli (2007).

Conclusions
We presented a model for approximate calculation of the effect of
vibration on the mobilization and average flow of oil blobs in pore
channels of variable radii, representing realistic converging/
diverging geometry of the naturally occurring porous media.

The calculated effects of the amplitude and frequency agree
with the expectations from the mobilization mechanism presented
in Fig. 2. For a particular entrapped blob, there is a minimum
amplitude required for its mobilization. This amplitude scales lin-
early with the frequency so that the ratio A/f is kept constant. At a
given amplitude, if the frequency becomes sufficiently high, the
mobilizing effect of vibrations stops altogether. We should men-
tion, however, that this statement applies only within the applica-
bility limits of the model, detailed in the Quasistatic Approach
subsection. At higher frequencies, other mechanisms, such as re-
duction in the effective capillary force caused by change in the
menisci shape or breakup of ganglia, may result in certain mobi-
lization effects. Other possible phenomena unaccounted for
(Nikolaevskiy 2006) may also lead to mobilization at perhaps
lower amplitudes.

In terms of practical applications, this model can be used to
estimate absolute volumes of oil mobilized by given amplitudes
and frequencies of vibration, provided sufficient information on
pore-size and ganglia-size distribution in the porous reservoir is
available. It also provides the minimum amplitude and maximum
allowable frequency required to initiate the stimulation effect.

The calculations show that, for the parameters of the model
corresponding to typical oil-bearing formations, the vibratory am-
plitudes required to achieve noticeable mobilization and increase
in the oil-flow rate are rather high (e.g., Figs. 6 and 9), on the order
of at least 10 m/s2, and are much higher at frequencies in excess of
10 Hz, which is not realistically achievable by the available bore-
hole seismic sources. The goal of the low-frequency stimulation of
large volumes of oil reservoirs thus seems beyond the reach of the
existing technical means, unless significant increases in the output
elastic-wave energies of seismic sources are obtained. This, how-

ever, does not apply to the possibility of vibratory stimulation of
near-surface contaminated aquifers, in which necessary sonic en-
ergies can be created from the surface.

Our model deals with a single pore channel and does not in-
corporate the interconnectivity of real porous media. Nevertheless,
interconnectivity can be argued to favor the release of entrapped
ganglia compared to a single channel of the same average geom-
etry. Indeed, if an oil ganglion occupies a large number of pores,
some of the downgradient menisci will likely be closer to the
mobilization threshold than the meniscus of the average channel;
the mobilization will then occur through that more-susceptible
throat. In this sense, our model can be viewed as an upper-bound
estimate for the respective mobilizing parameters of the vibratory
fields. Similar treatment of multiple-pore ganglia in interconnected
pore systems, which would require complete characterization of
(still poorly understood) dynamic behavior of menisci as they in-
vade a node of several pores, is yet to be provided. That task is left
for the future.

Nomenclature
A � acceleration amplitude
a � amplitude of wall acceleration
C � conductivity
D � diameter
I � sound intensity
L � length

lpore � length of pore
NRe � Reynolds number

Pc � capillary pressure
Posc � oscillatory body force

Pw � pressure in water phase
Qp � oil-flow rate

r � radius
rm � radius of curvature of meniscus

rmax � pore-body radius
rmin � pore-throat radius

Vp � maximum oil velocity
� � dynamic viscosity
�p � oil density
�s � solid density
� � surface tension
� � time
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