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Equation (1) should be solved numerically. However, one difficulty exists. The
second-order nonlinear wave equation (1) describes two identical waves propagating
in opposite directions. For linear equations this is not important. But for the
nonlinear case the interference of these waves causes their inieraction, which has
no physical sense. Consequently, eq. (1) should be factorized in order to reduce its
ordetr by one.

This can be done in a heuristic way by analogy with the linear wave equation.
The factorization of eq. (1) results in the reduction in order of all derivatives
and in taking the square root of all quantities between the parentheses having the
dimension of velocity squared. We thus obtain the factorized version:
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The second term in the r.h.s. describes the near-source region. Neglecting nonlinear
terms we have the ordinary wave equation
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describing a spherically spreading wave
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Eq. {2) can be used for calculating the wave propagation from the source with a
given motion. The boundary value problem with a zero initial condition can be

formulated
e(r = rp) = uo(t), u(t=0)=0,

For the effective solving of this problem the following numerical scheme can be
used. Since the r-derivative in eq. 2 is squared, we do not succeed in obtaining a
solution by stepping in the r-direction. That is why we should advance step by step
in titne and then take a cut at any needed r = const. To aedvance one step in time,
the fourth-order Adams predictor-corrector scheme was used, and the r-derivative
was replaced by its second-order centered finite-diflerence approximation.

In the numerical experiment the step sizes At = 2% 10~ * s and Ar = 20 m were
used. A sine boundary condition of the form

uolt) = Asin2rft (0 <t < t,.4)

was chosen with a costne time window, f = 25 Hz, @ = 10™% m. Experiments have
shown that the proposed scheme is stable when At/Ar = 1075 s/m.
The values of the elastic moduli appearing in eq. {1) were taken from {3]:

2.68 g/cm®; A = 8.538 x 10%; u = 3.226 x 10%;
1.1x 10%; I = =5.1 x 10°; n = 0.79 x 10° kg/cm’. (3)
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Figure 1; Amplitude spectra of the solutions of eq. 2: a - boundary condition, b -
one wavelength from the source.

The moduli A, B and C are easily calculated from the Murnaghan moduli m, ! and
n. Some of the coefficients appearing in eq. (2) can be negative. When calculating
the square roots, the moduli were taken.

2 Results

In Fig. 1 the amplitude specira of the boundary condition and the solution at the
distance of 300 m (one wevelength) are shown. The scale of curves is logarithmic.
The harmonic ratios in Fig. 1 are 42/4, = 7.9 x 1073, A3/4; = 3.2 x 10~*. For
the component at zero frequency the ratio is Ag/Ay = 6.3 x 1073,

Despite the large values (3) of the nonlinear elastic moduli, the nonlinear param-
eter having the order of 10%, the higher harmonics level obtained in the calculation
is not very high. In our field experiments nonlinear effects are larger at the compa-
rable distances. This discrepancy may indicate that the simple five-constant model
does not work when applied to nonlinear properties of real soft grounds. The model
of a variable-moduli medinm which reacts differently upon compression and tension
can be proposed as an alternative [4,5]. At the same time the five-constant model
may describe the rheology of the denser crystalline rocks.
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