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ABSTRACT 

There are new experimental results showmg that nonlinear effects are significant in 
se1smic wave propagation through the upper part of the geological medium (1]. Never
theleu, no adequate models exnt in seismology to describe theoretically such events. 
I describe here an attempt to der1ve a wave equa~ion for the spherical non.IJnear elastic 
wave and to solve it numerically 

1 The Numerical Model 

The well-known model for describing nonlinear wave processes in solids is a five
constant elasticity theory (2J. There can be found the equations of motion in Carte
sian coordinates. 

The specific character of the seismic problems is, that unlike in acoustics there 
are always point sources, small compared with the wavelength. Let us consider 
the problem of the propagation of a nonlinear elastic wave from such a source in a 
five-constant medium. The problem will have full spherical symmetry. 

The equation of motion proposed in (:.!] should be transformed to a spherical 
coordinate system. Having only a radial displacement component depending only 
on r, we obtain after manipulations with the coordinates 

(1) 

where u is a radial displacement, pis the density, 

c =. VA:2~ I 

{3 = 2Nt + N2, 

'Y 2N2, 

v :=; Nt + N2, 

1] = Nt + 2N2, 

Nt = A+3~ +A+2B , 

N2 = A+ 2B + 2C. 

A and~ are Lame parameters, A, B and C are third-order elastic moduli. 
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Equation (1) should be solved numerically. However, one difficulty exists. The 
second-order nonlinear wave equation (1) describes two identical waves propagating 
in opposite directions. For linear equations this is not important. But for the 
nonlinear case the interference of these waves causes their interaction, which has 
no physical sense. Consequently, eq. ( 1) should be factorized in order to reduce its 
order by one. 

This can be done in a heuristic way by analogy with the linear wave equation. 
The factorization of eq. (1) results in the reduction in order of all derivatives 
and in taking the square root of all quantities between the parentheses having the 
dimension of velocity squared. We thus obtain the factorized version: 

u, = •• ( c + f.·.+ ~;) + ; ( c + J;•.+ V!;) 
or 

u, = ( ,. ) • ( fi + fo J!•) u,. c + pu, + ; c + ../P u, + -p; . (2) 

The second term in the r.h.s. describes the near-source region. Neglecting nonlinear 
terms we have the ordinary wave equation 

u, = c ( u, + ; ) ' 

describing a spherically spreading wave 

u = ~ei(wt+kr). 
r 

Eq. (2) can be used for calculating the wave propagation from the source with a 
given motion. The boundary value problem with a zero initial condition can t>e 
formulated 

u(r = ro) = uo(t), u(t = 0) = 0. 

For the effective solving of this problem the following numerical scheme can be 
used. Since the r-derivative in eq. 2 is squared, we do not succeed in obtaining a 
solution by stepping in the r-direction. That is why we should advance step by step 
in time and then take a cut at any needed r = const. To advance one step in time, 
the fourth-order Adams predictor-corrector scheme was used, and the r-derivative 
was replaced by its second-order centered finite-difference approximation. 

In the numerical experiment the step sizes At = 2 x 10-4 sand Ar = 20 m were 
used. A sine boundary condition of the form 

uo(t) = A sin 211'/t (0 $ t $ tmax) 

was chosen with a cosine time window, f = 25 Hz, a= 10- 3 m. Experiments have 
shown that the proposed scheme is stable when At/ Ar = 10-5 s/m. 

The values of the elastic moduli appearing in eq. ( 1) were taken from [3]: 

p 2.68 g/cm3
; A = 8.538 x 105 ; p. = 3.226 x 105 ; 

m = 1.1 x 109
; l = - 5.1 x 109 ; n = 0.79 x 109 kg/cm2

. (3) 



252 I. Berunev 

6 •1o-2 

(/) 
E-< 
H 
:z: 
;::I 

>< 
P:: 

~ 
E-< 
H 
I'Q 

~ 
1::: 20 
~ 4•1o-2 
Q 

40 60 80 100 

~ 
H 

~ 
..:l 

~ 
E-< 
0 
r&:~ 
ll< 
(/) 

10-8 

20 80 100 

F R E Q U EN C Y, H Z 

Figure 1; Amplitude spectra of the solutions of eq. 2: a- boundary condition, b
one wavelength from the source. 

The moduli A, Band Care easily calculated from the Murnaghan moduli m, land 
n. Some of the coefficients appearing in eq. (2) can be negative. When calculating 
the square roots, the moduli were taken. 

2 Results 

In Fig. 1 the amplitude spectra of the boundary condition and the solution at the 
distance of 300m (one wavelength) are shown. The scale of curves is logarithmic. 
The harmonic ratios in Fig. 1 are A,/A1 = 7.9 x 10-3 , A3jA1 = 3.2 x 10-5• For 
the component at zero frequency the ratio is Ao/ A1 = 6.3 x I0-3 • 

Despite the large values (3) of the nonlinear elastic moduli, the nonlinear param
eter having the order of 104 , the higher harmonics level obtained in the calculation 
is not very high. In our field experiments nonlinear effects are larger at the compa
rable distances. This discrepancy may indicate that the simple five-constant. model 
does not. work when applied to nonlinear properties of real soft grounds. The model 
of a variable-moduli medium which reacts differently upon compression and tension 
can be proposed as an alternative [4,5]. At the same time the five-constant model 
may describe the rheology of the denser crystalline rocks. 
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