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Abstract—Biot’s theory of elastic waves in fluid-saturated

porous solids has two free parameters: the tortuosity a, character-

izing the dynamic coupling between the solid and the fluid, and the

structural factor d, representing the geometric properties of the

porous space. The meaning and significance of these parameters

have not been sufficiently understood. The tortuosity has the

physical meaning of the normalized mean square of the velocity of

the pore fluid relative to the solid wall; it has a low-frequency but

no high-frequency limits. The analytical calculation of the tortu-

osity for Biot’s slit-like pore provides its range of variability from

approximately 1–100 in the frequency range of practical interest.

The tortuosity has a significant effect on the properties of the Biot

waves of the second kind in the high-frequency range. On the other

hand, in realistically complex pore geometries, the values of the

tortuosity are virtually unpredictable. This limits the usefulness of

the Biot theory in predicting the wave propagation at high fre-

quencies. At all frequencies, the effect of the structural factor is

insignificant relative to the effect of the tortuosity. The conven-

tional compressional wave (the wave of the first kind) is insensitive

to both parameters at all frequencies. The frequencies of interest to

seismic exploration are also free of the uncertainty imposed by the

lack of constraints on the tortuosity as the only free parameter in

Biot’s theory.

Key words: Biot theory, Elastic waves, Porous media,

Tortuosity.

1. Introduction

The classic theory of elastic-wave propagation in a

fluid-saturated porous solid was established by Biot

(1956a, b). The elastic constants of the theory are P, Q,

R, and lfr, where lfr is the shear modulus of the dry

porous frame, and P, Q, and R are fully determined

through the bulk moduli of the pure solid K0 and the

pure fluid Kf, the bulk modulus of the dry frame Kfr,

and the porosity u (e.g., Mavko et al. 2009, p. 266). In

writing the expression for the kinetic energy per unit

volume of the aggregate, Biot also had to postulate

three additional ‘‘induced-mass’’ coefficients q11, q12,

q22 arising from the dynamic coupling between the

solid and the fluid (Biot 1956a, Eq. 3.2). However,

Biot offered no clear recipe for finding these coeffi-

cients. It is also worth noting that Biot’s induced-mass

coefficients are not the same as the components of the

induced-mass tensor introduced in fluid mechanics to

describe the flow past solid bodies. The expression for

the kinetic energy defining Biot’s q11, q12, q22

involves the velocity components of both the fluid and

the solid, whereas the kinetic energy used to define the

induced-mass tensor is expressed through the veloci-

ties of the moving body only (cf. Biot 1956a, Eq. 3.2

and Landau and Lifshitz 1959, Eq. 11.4).

Expressions for determining q11, q12, and q22

through a single parameter a called ‘‘tortuosity’’

appeared in later literature,

q11 ¼ 1 � uð Þqs � ð1 � aÞqf ;

q22 ¼ auqf ; ð1Þ

q12 ¼ 1 � að Þuqf ;

where qs and qf are the densities of the pure solid and

pure fluid (e.g., Mavko et al. 2009, pp. 266–267,

presented without derivation). Molotkov (2002) pro-

vided the derivation of this result based on the

original definitions by Biot.

In extending the theory to the high-frequency

range, Biot introduced the complex function FðjÞ
describing the deviation of the friction force, exerted

by the fluid on the pore wall, from its value in

Poiseuillean flow, where j is a non-dimensional fre-

quency parameter (Biot 1956b, Eqs. 4.2, 4.3). The

functional form of FðjÞ had to be postulated as

F jð Þ ¼ F dðf =fcÞ1=2
h i

; ð2Þ
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where f is the wave frequency, fc is a characteristic fre-

quency, and d is an undetermined geometric parameter

called the ‘‘structural factor’’ (Biot 1956b, Eq. 4.30).

The two coefficients, the tortuosity a and the structural

factor d, became the free parameters of the Biot theory.

The nature of the coefficients a and d and even the

range of their possible values have not been well

understood. It is the purpose of this paper to explore the

effect of the tortuosity and the structural factor on the

properties of the elastic waves in a fluid-saturated por-

ous solid, the meaning of these coefficients, their

measurability, and the limits of the Biot theory in pre-

dicting the properties of the propagating waves given

the uncertainty in constraining the free parameters.

2. The velocity-dispersion equation

To analyze the dependence of the elastic-wave

velocity on the tortuosity and the structural factor, we

need to obtain the roots of the full velocity-dispersion

equation in explicit form. For the compressional

waves, which will be the focus of this study, the full

dispersion relation valid at all frequencies is Eq. (6.3)

of Biot (1956b). [The equation in the original con-

tains a typo: the term ðc11c22 � c12Þ2
should read

c11c22 � c2
12

� �
]. Re-written through the elastic con-

stants P, Q, R and the mass coefficients q11, q12, q22,

also using the definition of the characteristic fre-

quency fc (Biot 1956b, Eq. 4.8), the dispersion

relation for the compressional waves becomes

PR � Q2

q2

1

V4

� Rq11 þ Pq22 � 2Qq12

q2
�

iuqf

q
fc

f
F jð ÞV2

c

� �
1

V2

þ q11q22 � q2
12

q2
�

iuqf

q
fc

f
F jð Þ

� �
¼ 0; ð3Þ

where V ¼ x=l is the complex velocity and l is the

complex wavenumber, q ¼ uqf þ ð1 � uÞqs is the

aggregate’s density, V2
c ¼ H=q is the reference

velocity, and H � P þ R þ 2Q. Equation (3) is

solved for 1=V2:

where the ‘‘plus’’ sign at the root is for the Biot

‘‘slow’’ wave (the wave of the second kind) and the

‘‘minus’’ is for the conventional ‘‘fast’’ wave (the

wave of the first kind).

To make the expression for the velocity explicit

and suitable for calculations, one needs to extract the

square root in (4). The root can be represented asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 þ ib1

p
, where

a1 � Rq11 þ Pq22 � 2Qq12 þ uqf H
fc

f
Fi

� �2

� 4 PR � Q2
� �

q11q22 � q2
12 þ uqfq

fc

f
Fi

� �

� ðuqf H
fc

f
FrÞ2; ð5Þ

b1 � 2uqf

fc

f
Fr 2ðPR � Q2Þq
	

� H Rq11 þ Pq22 � 2Qq12 þ uqf H
fc

f
Fi

� ��
;

and Fr and Fi are the real and imaginary parts of the

function FðjÞ. The root is then explicitly written as

(Abramowitz and Stegun 1964, Eq. 3.7.27)

ða1 þ ib1Þ1=2 ¼ � r1 þ a1

2


 �1=2

þ iðsignb1Þ
r1 � a1

2


 �1=2
� �

;

ð6Þ

where r1 is the modulus

r1 ¼ ða2
1 þ b2

1Þ
1=2: ð7Þ

This replaces Eq. (4) with

1

V2
¼

Rq11 þ Pq22 � 2Qq12 � iuqf H
fc

f
F �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRq11 þ Pq22 � 2Qq12 � iuqf H

fc
f

FÞ2 � 4ðPR � Q2Þðq11q22 � q2
12 � iuqfq

fc

f
FÞ

q

2ðPR � Q2Þ ;

ð4Þ
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which, again, can be represented as 1
V2 ¼ a2 þ ib2,

where

a2 �
Rq11 þ Pq22 � 2Qq12 þ uqf H

fc
f

Fi � r1þa1

2

� �1=2

2ðPR � Q2Þ ;

ð8Þ

b2 �
�uqf H

fc
f

Fr � ðsignb1Þ r1�a1

2

� �1=2

2ðPR � Q2Þ :

Extracting the square root one more time leads to the

final expression for the complex velocity

1

V
¼ � r2 þ a2

2


 �1=2

þ iðsignb2Þ
r2 � a2

2


 �1=2
� �

ð9Þ

where r2 is the modulus

r2 ¼ ða2
2 þ b2

2Þ
1=2: ð10Þ

The positive sign in (9) should be selected.

Equation (9), combined with (1), (2), (5), (7), (8),

and (10), can be used to calculate the complex

velocity (or the complex wavenumber l ¼ x=V) for

the propagating compressional waves. The ‘‘plus’’

sign in (8) should be selected for the slow wave and

‘‘minus’’ for the fast wave.

The phase velocities are calculated as

c ¼ x
lr
¼ 1

Re 1
V

� � ¼ 2

r2 þ a2

� �1=2

; ð11Þ

where lr ¼ Re(lÞ, with the same sign selection in (8)

to pick the slow or the fast wave.

There is a practical difficulty in using Eq. (11) in

the calculation of the fast-wave phase velocity. At

relatively high values of porosity (greater than

approximately 0.85), certain combinations of input

parameters cause r2 to become very close to the

negative a2, leading to a loss of precision and the

numerical ‘‘underflow’’ (an artificial division by

zero). Computations become unstable. This situation

does not occur for the slow wave. The difficulty can

be avoided if, for the fast-wave calculation, the

original Eq. (4) is inverted, leading to

and then the numerator and denominator on the right-

hand side are multiplied by

1

V2
¼

Rq11 þ Pq22 � 2Qq12 � iuqf H
fc
f

F � 1ffiffi
2

p ðr1 þ a1Þ1=2 þ iðsignb1Þðr1 � a1Þ1=2
h i

2ðPR � Q2Þ ;

V2 ¼ 2ðPR�Q2Þ

Rq11 þPq22 � 2Qq12 � iuqf H
fc

f
F �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rq11 þPq22 � 2Qq12 � iuqf H

fc
f
F


 �2

�4ðPR�Q2Þ q11q22 �q2
12 � iuqfq

fc
f

F

 �r ;

Rq11 þ Pq22 � 2Qq12 � iuqf H
fc

f
F �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rq11 þ Pq22 � 2Qq12 � iuqf H

fc

f
F

� �2

�4ðPR � Q2Þ q11q22 � q2
12 � iuqfq

fc

f
F

� �s
:
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This results in an alternative equation for the complex

velocity,

where now the ‘‘minus’’ sign in the numerator stands

for the slow wave and ‘‘plus’’ for the fast one.

The square root in Eq. (12) is the same as that in

Eq. (4), and so expression (6) for it still holds, with

the coefficients a1, b1, and r1 still defined by (5) and

(7). Using (6) to replace the root in (12) as before

transforms Eq. (12) to V2 ¼ a�
2 þ ib�

2, with the new

coefficients

Extracting the root one more time leads to

V ¼ r�2 þ a�
2

2

� �1=2

þ iðsignb�
2Þ

r�2 � a�
2

2

� �1=2

; ð14Þ

where r�2 is the modulus

r�2 ¼ ða�
2Þ

2 þ ðb�
2Þ

2
h i1=2

: ð15Þ

Equation (14), combined with (1), (2), (5), (7),

(13), and (15), can be used to calculate the complex

velocity or the complex wavenumber for the com-

pressional waves in an alternative way. The ‘‘minus’’

sign in (13) should be selected for the slow wave and

‘‘plus’’ for the fast wave.

The phase velocities c ¼ x=lr, based on Eq. (14),

are calculated as

c ¼ r�2
2

r�2 þ a�
2

� �1=2

: ð16Þ

The use of Eq. (16) for the fast-wave calculations

avoids the loss of precision at high values of porosity.

However, it cannot be used for the slow-wave calcula-

tions for exactly same reason: at high porosities, r�2 can

become very close to the negative a�
2, causing the loss

of precision and instability, but this time for the slow

wave. In practice, therefore, for the porosities higher

than 0.85, we used Eq. (11) to compute the slow waves

and Eq. (16) for the fast waves. Note that, if the

porosity is smaller than approximately 0.85, either

equation can be used for both types of waves.

Equations (11) and (16) are valid at all frequen-

cies. The known high- and low-frequency phase-

velocity asymptotics can be extracted from Eq. (16).

The high-frequency (f � fc) limit is obtained by

dropping the terms proportional to fc/f. This leads to

a1 � Rq11 þ Pq22 � 2Qq12ð Þ2�4 PR � Q2ð Þ q11q22ð
� q2

12Þ, b1 � 0, r1 � a1, b�
2 � 0, r�2 � a�

2, and, from

Eq. (16),

V2 ¼
Rq11 þ Pq22 � 2Qq12 � iuqf H

fc
f

F �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rq11 þ Pq22 � 2Qq12 � iuqf H
fc
f

F

 �2

�4ðPR � Q2Þ q11q22 � q2
12 � iuqfq

fc
f

F

 �r

2 q11q22 � q2
12 � iuqfq

fc
f

F

 � ;

ð12Þ

a�
2 �

Rq11 þ Pq22 � 2Qq12 þ uqf H
fc

f
Fi � r1þa1

2

� �1=2
h i

q11q22 � q2
12 þ uqfq

fc

f
Fi


 �
� uqfq

fc

f
Fr �ðsignb1Þ r1�a1

2

� �1=2�uqf H
fc

f
Fr

h i

2 q11q22 � q2
12 þ uqfq

fc

f
Fi


 �2

þ uqfq
fc
f

Fr


 �2
� � ;

b�
2 �

uqfq
fc
f

Fr Rq11 þ Pq22 � 2Qq12 þ uqf H
fc
f

Fi � r1þa1

2

� �1=2
h i

þ q11q22 � q2
12 þ uqfq

fc

f
Fi


 �
�ðsignb1Þ r1�a1

2

� �1=2�uqf H
fc

f
Fr

h i

2 q11q22 � q2
12 þ uqfq

fc

f
Fi


 �2

þ uqfq
fc
f

Fr


 �2
� � :

ð13Þ
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Equation (17) is the same as the high-frequency

velocity VP1 provided by Mavko et al. (2009,

p. 266). What is important is that, at high frequencies,

the dependence of the velocities on the structural

factor d disappears, and a remains the only free

parameter through the relationships (1).

In the limit of low frequencies (f 	 fc), the terms

proportional to fc
f

Fr and fc
f

Fi become important. One

needs to remember that, for the functional forms of

FðjÞ considered by Biot, Fr ! 1 and Fi ! 0 as

f=fc ! 0 (Biot 1956b, Figs. 2 and 4). In the factor
fc
f

Fr, Fr can then be replaced by unity, while the

factor fc
f

Fi is of O(1) and is much smaller. The terms

proportional to fc
f

Fr then dominate. We thus have

a1 � �ðuqf H
fc

f
Þ2; b1 � 2uqf

fc

f

"
2 PR � Q2
� �

q

� H Rq11 þ Pq22 � 2Qq12 þ uqf H
fc

f
Fi

� �#
;

b1j j 	 a1j j, r1 � ðuqf H
fc
f
Þ2

(positive, being a mod-

ulus). We also have

a�
2 �

�uqfq
fc
f

� signb1ð Þuqf H
fc
f
� uqf H

fc
f

h i

2 uqfq
fc
f


 �2

¼ �H �signb1 � 1ð Þ
2q

¼ H 1 � signb1ð Þ
2q

¼ H

2q
ð1 � 1Þ

(the minus in the final expression is for the slow

wave; in the last step, an observation was made that

b1 is always negative). Further

where we observed that the terms proportional to fc
f

Fi

dominate over the sum of others in the parentheses

(the plus in � H
2q Fi is for the slow wave). Finally, r�2

becomes r�2 � H=q for the fast wave and r�2 �
HFi=2q for the slow wave. Substituting the values of

the coefficients into Eq. (16), we obtain the phase

velocity of the fast wave as c2 ¼ H=q, which also is

Biot’s reference velocity Vc. For the slow wave,

c2 ¼ HFi=q � 0. In the low-frequency limit, there-

fore, only the conventional compressional wave

propagates, while the slow wave disappears, as it

should (cf. Biot 1956a, Figs. 3 and 5). Note that there

are no free parameters in the low-frequency limit.

3. Tortuosity and its effect on wave velocities

The conclusions so far are that (1) tortuosity, as a

free parameter, governs the velocities of the elastic

waves at high frequencies; (2) there are no free

parameters at low frequencies, and (3) both tortuosity

and the structural factor affect the velocities at

intermediate frequencies. We now proceed to inves-

tigating the effect of tortuosity, for which we first

need to establish its physical meaning and the limits

of variability.

3.1. Definitions of tortuosity

There is a lack of consistency in the literature on

what should be called tortuosity. Distinct physical

quantities bearing the same name have been used,

c2 ¼ a�
2 ¼

Rq11 þ Pq22 � 2Qq12 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRq11 þ Pq22 � 2Qq12Þ2 � 4ðPR � Q2Þðq11q22 � q2

12Þ
q

2ðq11q22 � q2
12Þ

: ð17Þ

b�
2 �

uqfq
fc
f

Rq11 þ Pq22 � 2Qq12 þ uqf H
fc
f

Fi


 �
þ q11q22 � q2

12 þ uqfq
fc
f

Fi


 �
� signb1ð Þuqf H

fc
f
� uqf H

fc
f

h i

2 uqfq
fc
f


 �2

� � H

2q
Fi;
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often incorrectly assumed to be interchangeable (also

see Clennell 1997).

First, the ‘‘tortuosity’’ contained in Eqs. (1) is

based on the original definitions by Biot.

Second, ‘‘tortuosity’’ (often denoted by T) is a

parameter of the Carman-Kozeny tubular model of

rock permeability. Suppose there is a tortuous tube of

length Le, and the length of a straight line connecting

its ends is L, then the tortuosity in the Carman-

Kozeny model is ðL=LeÞ2 
 1 (Bear 1972, p. 166). To

our knowledge, this purely geometric quantity has no

relationship to the ‘‘tortuosity’’ a appearing in

Eqs. (1) and controlling the dynamic coupling

between the solid and the fluid in an elastic wave.

Third, Johnson et al. (1987, Eq. 2.1a) also intro-

duce ‘‘tortuosity’’. It is defined for pure ideal fluid

through the equation

aqf

oU~

ot
¼ �rp; ð18Þ

where U~ is the fluid velocity and p is the pressure,

which is the linearized Euler’s equation with the

density modified. Since this definition does not bear

any relevance to the presence of the solid, a in this

equation cannot be the same as a in (1) as the fol-

lowing demonstrates. Johnson et al. (1987, p. 392)

argue that Eq. (18) can be obtained from Biot’s

equations of motions in the limit of stiff frame, in

which they set d~� 0 (d~ is the displacement of the

solid) and neglect viscosity. Equation (18) then

indeed follows from, for example, the second of

Eqs. 3.21 and Eq. 2.3 of Biot (1956a), in which the

definitions (1) are used, if d~� 0. The latter assump-

tion is unrealistically strong, though, as it leads to

contradictions. In the same approximation, for

example, the wave Eqs. (7.1) of Biot (1956a) result in
Q
R
¼ q12

q22
. With the standard expressions for Q and

R (Mavko et al. 2009, p. 266), Q
R
¼ 1

u � 1 � Kfr

uK0
. On

the other hand, from Eqs. (1),
q12

q22
¼ 1

a � 1. Equating

Q/R and q12=q22 and solving for a gives

a ¼ u=ð1 � Kfr

K0
Þ. Since the stiff-frame approximation

has been used, in which the deformation of the solid

has been set to zero, there is no difference between

the stiffnesses of the frame Kfr and of the pure solid

K0, both being infinitely large. Their ratio can be

taken as one. The tortuosity a, therefore, will always

tend to infinity, which is incompatible with Eqs. (1).

Note, also, that the quantity a considered by Johnson

et al. has a high-frequency limit (Johnson et al. 1987,

p. 382); this contradicts the exact calculation of the

tortuosity defined in Eqs. (1), which is provided in

the following sections.

Still further, in Johnson et al. (1987)’s interpretation,

a in Eq. (18) is a complex quantity. This also contra-

dicts the definitions (1), from which it is necessarily

real. Indeed, the quantities through which a can be

expressed from (1) are the densities qs and qf , porosity

u, and the mass coefficients q11, q22, and q12 in the

expression for the kinetic energy of the aggregate. All

of these quantities are real-valued by their nature,

therefore, a in Eqs. (1) is real-valued too.

For the rest of the article, the quantity a appearing

in Eqs. (1) will be assumed when we refer to the

‘‘tortuosity’’.

Fourth, it is often stated that a = 1 (the minimum

possible value) for uniform cylindrical pores with

axes parallel to the pressure gradient and a = 3 for a

random pore system (Mavko et al. 2009, p. 267). The

latter authors refer to Stoll (1977) as the source of this

result, although this publication by Stoll does not

contain it. On the other hand, Stoll (1974, p. 26) does

mention it, although still without a reference to the

source. Clearly, the equality of a to three contradicts,

for example, the definition of tortuosity cited by Bear,

since that quantity cannot exceed one.

The result that a equals three for a system of

randomly oriented pores, referred to by Stoll (1974)

and Mavko et al. (2009), most probably dates back to

Geertsma (1961, p. 236), who finally attributes the

derivation to Zwikker and Kosten (1949). To see if

this is a reliable foundation, we need to ascertain that

the quantity discussed by Zwikker and Kosten and

later by Geertsma is indeed the modern ‘‘tortuosity’’

in the sense of Mavko et al. (same as in Eqs. 1). In the

use by Geertsma, this quantity is the ‘‘mass-coupling

factor’’ j (not to be confused with the argument in

Biot’s function FðjÞ in Eq. 2), which appears in the

formula for the parameter qc, qc ¼ jqf =u (Geertsma

1961, Eq. 2). By comparing Eqs. (1) of Geertsma

(1961) with Eqs. (8.28) of Biot (1962b), we find that

Geertsma’s qc is Biot’s m. For m, Biot (1962b,

Eqs. 8.19) has

m ¼ q22=u
2: ð19Þ
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Equating qc and m then leads to q22 ¼ uqf , which

coincides with q22 from Eqs. (1) and shows that

Geertsma’s j is indeed the tortuosity a. Now, in turn,

we need to make sure that the parameter used by

Zwikker and Kosten, referred to by Geertsma, still

has the same meaning. Zwikker and Kosten (1949,

Eq. 1.23) call it the ‘‘structure constant’’ k, which is

postulated to appear in the non-viscous equation of

motion for the air enclosed in a pore, k
u qf

oU
ot

¼ � op
ox

.

This equation contradicts in form Eq. (18) used by

Johnson et al. (1987), demonstrating that there is not

a unique way to formulate such a relation. In our

view, both are inaccurate, because they both deviate

from Euler’s equation, one of the main equations of

fluid mechanics. Further, even if Eq. (18) were

correct, Zwikker and Kosten’s ‘‘structure constant’’

k would still not be the quantity identical with a. This

is one reason why Zwikker and Kosten’s inferred

behavior of k does not apply to the possible behavior

of the tortuosity. Another reason is that Zwikker and

Kosten’s conclusions do not seem to be well founded

either. The authors’ inference that the structural

factor for a system of randomly oriented pores equals

three appears to follow from their averaging the

factor 1=cos2h, where h is the angle between the pore

axis and the direction of the pressure gradient

(Zwikker and Kosten 1949, p. 21). The origin of this

conclusion is unclear, because averaging this factor

over all possible angles would involve the diverging

integral r
p

0

dh=cos2h.

We conclude that the inference about the tortu-

osity ranging from one to three between the system of

pores oriented in the direction of pressure gradient

and the system of random pores does not appear to be

well founded. This inference also implies that the

tortuosity is constant for any given pore geometry,

whereas, as we will see next, it exhibits, even for the

simplest cases, a complex frequency dependence.

3.2. Exact calculation of tortuosity

We see that the meaning of the tortuosity has been

far from being clear. The nature of this parameter can

be best understood from its definition. The quantity a
originates in the coupling coefficients q11, q12, q22

(Eqs. 1), which were introduced by Biot in the

expression for the kinetic energy of the fluid–solid

aggregate (Biot 1956a, Eq. 3.2). Molotkov (2002),

based on this definition of q11, q12, and q22, derived

relations (1) and the exact formula for the parameter

a. It is useful for the characterization of the behavior

of a to consider a simple example, in which the

tortuosity can be calculated exactly. We consider a

simple example of a one-dimensional fluid-filled

conduit bounded by two parallel solid surfaces,

corresponding to Biot’s ‘‘slit-type’’ pore (Biot

1956b, Fig. 1, reproduced in Fig. 1 here). The solid

walls are oscillating along their boundaries. For this

case,

a ¼ 1 þ
R a

�a
ðU � �UÞ2

dy

2að �U � �uÞ2
; ð20Þ

where U and u are the velocities of the fluid and the

solid in the direction of the pore axis, respectively;

the integration is performed over the width 2a of the

pore in the direction y perpendicular to the axis, and

the overbar means the average over the pore width

(Molotkov 2002, Eqs. 11, 12). Note that Molotkov’s

article contains a typo: it shows a factor of two before

the second term in Eq. (20), while it should be one.

Note that Biot (1962b, Eqs. 8.19) introduced the

parameter m that is equivalent to the tortuosity;

however, Biot did not provide any clear means to

calculate it. Equation (20) fills this gap.

In calculating the exact tortuosity for this simple

system, we can make use of the results already

available from the work by Biot. Biot (1956b)

worked with the relative velocity of the fluid,

U1 ¼ U � u. Replacing U in Eq. (20) with

U ¼ U1 þ u, we obtain a ¼ 1þ
r

a

�a
ðU1� �U1Þþðu��uÞ½ �2dy

2a �U2
1

¼ 1 þ r
a

�a
ðU1� �U1Þ½ �2dy

2a �U2
1

, where, in

Figure 1
Biot’s slit pore (after Biot 1956b, Fig. 1)
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the last step, we used the fact that the velocity at any

given time is the same on the solid walls, u ¼ �u.

Then, in completing the square of the bracketed

expression and noting that 1
2a

r
a

�a

U1dy ¼ �U1, we

obtain

a ¼
R a

�a
U2

1dy

2a �U2
1

; ð21Þ

which can be recast as

a ¼ U2
1=

�U2
1 : ð22Þ

The tortuosity then acquires a particularly trans-

parent physical meaning being the normalized

average square of the relative velocity of the fluid.

Equation (22) for the tortuosity was previously given

by Allard and Atalla (2009, Eq. 5.21) without

derivation; a was assumed to be frequency-indepen-

dent. We will next see that the exact calculation using

Eq. (22) shows that this is not the case. Allard and

Atalla (2009) also overlook the fact that the relative

velocity U1 should enter Eq. (22), which becomes

important when the pore walls are moved by an

elastic wave.

We note that, similar to Eqs. (1), Eq. (22) also

precludes a from being a complex quantity. The

velocity U1 is a physical field, for which only the real

component carries physical meaning. As is well

known, representing a physical field as a complex

quantity (such as in Eq. 23) provides convenience in

the mathematical manipulations on the field as long

as only the linear operations are performed (e.g.,

Landau and Lifshitz 1959, p. 89). Equation (22)

represents the tortuosity through a nonlinear operator

on U1 and, therefore, has to use the real part of U1 to

avoid meaningless results.

In Eq. (21), U1 and �U1 are the instant real-valued

velocities. On the other hand, assuming a sinusoidal

time dependence, Biot deals with the complex

velocities,

U1 � U10eixt; �U1 � �U10eixt: ð23Þ

For the slit model, he provides the analytical

expressions for the complex amplitudes U10 and �U10 :

U10 ¼ X0

ix
1 �

cosh ðix
m Þ

1=2
y

h i

cosh ðix
m Þ

1=2
a

h i
8<
:

9=
;; ð24Þ

�U10 ¼ X0

ix
1 � 1

a

�
m

ix

�1=2

tanh

�
ix
m

�1=2

a

" #( )
;

ð25Þ

where m ¼ g=qf , and g is the viscosity of the fluid

(Biot 1956b, Eqs. 2.9 and 2.11, respectively). (To

emphasize that a quantity is a complex amplitude, we

have added a subscript ‘‘zero’’ to it, while Biot drops

it). In writing Eqs. (24) and (25), X in the body force

Xqf ¼ � op
ox
� qf €u (Biot 1956b, Eq. 2.4) was repre-

sented as

X ¼ � 1

qf

op

ox
� €u � X0eixt; ð26Þ

where X0 is a complex amplitude. For the instant

velocity, keeping in mind (23) and (26), Eq. (24) can

be re-written as

U1 ¼ X

ix
1 �

cosh ðix
m Þ

1=2
y

h i

cosh ðix
m Þ

1=2
a

h i
8<
:

9=
;: ð27Þ

We can us assume that X ¼ � 1
qf

op
ox
� €u is a real-

valued external forcing on the fluid (it can be checked

that it can always be represented as X0eixt). From

(27), we then obtain the real-valued instant velocity,

Re(U1Þ ¼�X

x
cosðcyÞcoshðcyÞ tan cyð Þ tanh cyð Þ� tanðcaÞtanhðcaÞ½ �

cosðcaÞcoshðcaÞ 1þ tan2ðcaÞtanh2ðcaÞ
	 � ;

ð28Þ

where we have introduced the notation

c � ðx=2mÞ1=2
.

Likewise, from (25), using (23) and (26), we

obtain

Re( �U1Þ ¼
X

4acx
sin 2cað Þ � sinhð2caÞ

cos2ðcaÞcosh2ðcaÞ 1 þ tan2ðcaÞtanh2ðcaÞ
	 � :

ð29Þ

The tortuosity a is then calculated from Eq. (21)

as a ¼ r
a

�a
½ReðU1Þ�2dy

2a½Re( �U1Þ�2
by substituting Eqs. (28) and (29).

After completing the integral, we arrive at
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a¼ cacos2ðcaÞcosh2ðcaÞ
sin 2cað Þ� sinhð2ca½ �2

�
n

4ca p2 �1
� �

þ2 sin 2cað Þþ sinhð2caÞ½ � p2 þ1
� �

þ sin 2cað Þcosh 2cað Þ 2p2 �ðpþ1Þ2
h i

þ sinh 2cað Þcos 2cað Þ 2p2 �ðp�1Þ2
h io

;

ð30Þ

where, for brevity, we introduced the notation

p� tanðcaÞtanhðcaÞ. Notice that the form of the term

X does not eventually matter as it cancels in the

calculation of a. Also note that a is a function of a

single parameter ca¼ f
m=ðpa2Þ

h i1=2

. Using Eqs. (4.8)

and (4.24) of Biot (1956b), for the slit pore we obtain

fc ¼ 3m=ð2pa2Þ: ð31Þ

The parameter ca, therefore, can be cast in terms

of the characteristic frequency,

ca ¼ 3

2

f

fc

� �1=2

: ð32Þ

The tortuosity a is then a function of f/fc only.

3.3. Properties of tortuosity

3.3.1 The range of change in f/fc

For the slit-like pore, the characteristic frequency is

given by Eq. (31); for the cylindrical pore, it is given by

fc ¼ 4m=ðpa2Þ (Biot 1956b, Eq. 4.15). In both cases, fc
has the order of m=a2. In a typical porous rock, pore

widths range approximately from 10-6 to 10-4 m.

Take the representative values of g = 10-3 Pa 9 s and

qf = 103 kg/m3, then fc ranges from 102 to 106 Hz.

Frequencies as low as 10 Hz are important for seismic

exploration, and frequencies as high as 107 Hz are used

in laboratory studies of acoustic properties of rocks.

The overall expected range of change in the dimen-

sionless frequency f/fc, of interest to rock-physics

applications, therefore, is approximately 10-5–105.

3.3.2 Dependence of tortuosity on f/fc

Figure 2 plots a calculated from Eq. (30) as a

function of f/fc, using the relation (32) in the

argument. Several observations regarding the prop-

erties of the tortuosity can be made.

First, there is an opinion in the literature that the

tortuosity a is a purely geometric factor (e.g., Mavko

et al. 2009, p. 267). The theoretical tortuosity plotted

in Fig. 2 shows that this is not the case: a exhibits a

strong frequency dependence. This dependence was

anticipated by Biot. On p. 1495 of Biot (1962b), one

reads, ‘‘Strictly speaking, a (frequency) correction

must apply to the density parameters q11, q12, and q22

to take into account the departure of the microveloc-

ity field from Poiseuille flow as the frequency

increases.’’ This is exactly what Eq. (30)

accomplishes.

At frequencies satisfying the condition f/fc . 1,

the flow is of Poiseuillean type (cf. Biot 1956a,

Eq. 6.11). The tortuosity in this range changes from

its asymptotic value of 6/5 to a local minimum of

almost exactly one. At these frequencies, the channel

width becomes comparable to or is smaller than the

viscous skin depth m
pf


 �1=2

, or the effective depth of

penetration of the oscillatory motion of the wall

(Landau and Lifshitz 1959, Eq. 24.5). In the Poiseuil-

lean flow regime, the entire fluid profile across the

channel moves in phase, explaining the simple

behavior of the tortuosity.

At higher frequencies, the flow is no longer

Poiseuillean and a is no longer constant. Instead, it

infinitely grows as frequency increases. In this flow

regime, part of the fluid profile near the wall, within

Figure 2
Tortuosity for the slit-like pore as a function of dimensionless

frequency
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the skin-depth boundary layer, moves out-of-phase

with the rest of the channel, explaining the more

complex, frequency-dependent, behavior of the tor-

tuosity. The high-frequency (ca � 1) asymptotics of

a is a ¼ ca=2. It can be obtained from Eq. (30) by

using the properties of the hyperbolic functions at

large argument: tanx ! 1; sinhx; coshx � sinx; cosx,

and sinhx � coshx � ex=2, all as x ! 1. From

Eq. (32), the asymptotics is then a ¼ 3
8

f
fc


 �1=2

, rep-

resenting a straight line on the log–log scale having

f/fc as the abscissa. This is the equation of the straight

line seen at high frequencies in Fig. 2; a follows the

asymptotic equation almost exactly already at f/fc J
6.

Second, the practical range of change in a, based

on this simple model, is between approximately 1 and

100.

Biot (1962a, p. 1258) states without derivation

that the parameter m for the slit varies from (6/5)qf to

qf over the entire frequency range. To put this result

into our context, we substitute the second of Eqs. (1)

into (19), arriving at a ¼ mu
qf

. The range of change in

m found by Biot then leads to the range in a from (6/

5)u to u. This result is exactly the low-frequency

behavior of a seen in Fig. 2 if in the last equation we

formally set u = 1 for the slit (the latter will no

longer be correct if we assume a finite thickness of

the wall, whereas Eq. 30 will still be valid). The

conclusion by Biot also does not capture the square-

root increase in a at higher frequencies.

Figure 2 shows that, even for the simplest case of

a slit-like pore, the tortuosity exhibits a complex

behavior. Figure 2 was obtained for the case of one-

dimensional wave propagation with the oscillations

of both solid and the fluid in the plane of the solid

wall. However, in the definition of the coefficients

q11, q12, q22, Biot does not make a distinction

between those defined for the one-dimensional case

and those for the general three-dimensional propaga-

tion (cf. Eqs. 3.2 and 3.3 of Biot 1956a). The lack of

such a distinction is indeed justified for the isotropic

scenario considered by Biot, in which there is no

preferred particle-velocity direction. Equation (22)

hence is still valid (also see Molotkov 2002, Eqs. 20).

In cases of complex geometries, calculation of the

tortuosity will require the knowledge of the fluid-

velocity field, which cannot be obtained analytically

but for the simple one-dimensional ducts and tubes,

and can be calculated numerically for somewhat

more involved cases. For one-dimensional channels,

because of the symmetry, the velocity field and,

hence, the tortuosity do not depend on which

direction the fluid is flowing, as exemplified by

Eq. (30). In three-dimensional porous geometries

with no symmetries, the flow field will depend on

the direction of the driving body force; the latter, as

in Eq. (26), will generally include the components

from the pressure gradient and the inertial forcing

caused by the wave-induced acceleration of the wall.

In the absence of symmetries, the tortuosity, there-

fore, can be expected to depend on both the direction

of the gradient and the wave-propagation direction. In

the general case of wave propagation in porous rocks

with irregular pore structure of unknown complexity,

the fluid-velocity field, and hence the tortuosity, are

unpredictable.

The conclusion is that the behavior of a in

realistic porous structures can be even more complex,

in unknown ways, than that exhibited in Fig. 2, and is

generally unpredictable.

3.4. Effect of tortuosity on wave velocities

Having established the general properties of the

tortuosity, for the simple case allowing analytical

treatment, we can investigate the effect of this

parameter on the propagation of the fast and slow

waves.

To use expressions (11) or (16) for the phase

velocities, we need the explicit relations for the real

and imaginary parts of Biot’s correction function

FðjÞ. For the slit-like pore model under considera-

tion, FðjÞ is

F jð Þ ¼ 1

3

i1=2jtanhði1=2jÞ
1 � 1

i1=2j
tanhði1=2jÞ ð33Þ

(Biot 1956b, Eq. 2.17). Extracting the real and

imaginary parts of Eq. (33) leads to
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In calculating the wave velocities, the argument of

FðjÞ as in Eq. (2) will be used.

Figure 3 presents the frequency dependences of

the fast (a) and slow (b) wave velocities for the two

end values of the parameter a, a = 1 and a = 100,

representing the range of change established from the

analysis of the slit-like model. The velocities have

been normalized by the reference velocity Vc. The

calculations were performed using Eq. (11), com-

bined with (1), (5), (7), (8), (10), and (34). The

porosity is u = 0.5. The constants P, Q, and R were

calculated through the formulae given by Mavko

et al. (2009, p. 266) (which are equivalent to Eqs. 21

and 24 of Biot and Willis 1957), with K0 = 37 GPa

(bulk modulus of pure quartz) and Kf = 2.25 GPa

(bulk modulus of water). To determine Kfr and lfr, we

applied an empirical relation developed by Krief

et al. (1990) used for velocity-porosity model

calibrations (e.g., Goldberg and Gurevich 1998):

Kfr ¼ 1 � uð Þ
3

1�uK0, lfr ¼ 1 � uð Þ
3

1�ul, where l is the

shear modulus of the pure solid. For l and qs, we

took the values for quartz, l = 45 GPa and

qs = 2650 kg/m3, and, for qf , the value for water,

qf = 997 kg/m3. Finally, for the parameter d, we

took d =
ffiffiffiffiffiffiffiffiffiffi
16=3

p
, which is the minimum value used

by Biot (1956b, Eqs. 4.31–4.34). We remind, though,

that Biot’s assignment of a number to d had arbitrary

character; we will devote a more detailed discussion

to the effect of this uncertainty in a later section.

From Fig. 3a, b, we see that the general effect of

increasing a is to lower the velocities of both the fast

and the slow waves. However, the effect is much

stronger for the slow wave. To illustrate, Fig. 3c

shows the ratio of the velocities at two end values of

a, c(a = 1)/c(a = 100), for both waves. The respec-

tive change in the slow-wave speed is over an order

FrðjÞ ¼
ffiffiffi
2

p

3
j2 � sin

ffiffiffi
2

p
j

� �
j coshð

ffiffiffi
2

p
jÞ þ cos

ffiffiffi
2

p
j

� �	 �
�

ffiffiffi
2

p
sinhð

ffiffiffi
2

p
jÞ

 �
þ sinh

ffiffiffi
2

p
j

� �
j coshð

ffiffiffi
2

p
jÞ þ cos

ffiffiffi
2

p
j

� �	 �
�

ffiffiffi
2

p
sinð

ffiffiffi
2

p
jÞ

 �

j coshð
ffiffiffi
2

p
jÞ þ cos

ffiffiffi
2

p
j

� �	 �
�

ffiffiffi
2

p
sinhð

ffiffiffi
2

p
jÞ

 �2þ j coshð
ffiffiffi
2

p
jÞ þ cos

ffiffiffi
2

p
j

� �	 �
�

ffiffiffi
2

p
sinð

ffiffiffi
2

p
jÞ

 �2
;

FiðjÞ ¼
ffiffiffi
2

p

3
j2 sinh

ffiffiffi
2

p
j

� �
j coshð

ffiffiffi
2

p
jÞ þ cos

ffiffiffi
2

p
j

� �	 �
�

ffiffiffi
2

p
sinhð

ffiffiffi
2

p
jÞ

 �
þ sin

ffiffiffi
2

p
j

� �
j coshð

ffiffiffi
2

p
jÞ þ cos

ffiffiffi
2

p
j

� �	 �
�

ffiffiffi
2

p
sinð

ffiffiffi
2

p
jÞ

 �

j coshð
ffiffiffi
2

p
jÞ þ cos

ffiffiffi
2

p
j

� �	 �
�

ffiffiffi
2

p
sinhð

ffiffiffi
2

p
jÞ

 �2þ j coshð
ffiffiffi
2

p
jÞ þ cos

ffiffiffi
2

p
j

� �	 �
�

ffiffiffi
2

p
sinð

ffiffiffi
2

p
jÞ

 �2
:

ð34Þ

a

b

c

Figure 3
Effect of tortuosity on wave velocities. u = 0.5 and d =

ffiffiffiffiffiffiffiffiffiffi
16=3

p
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of magnitude, whereas the change in the fast-wave

speed is only approximately 3 percent and is not even

seen on the scale of the graph in Fig. 3c.

Figure 4 shows the same frequency dependences

of the wave speeds at an increased value of porosity,

u = 0.8. As we explained earlier, the calculations for

the slow wave were performed in the same way

(through Eq. 11) as for Fig. 3; for the fast wave, we

used Eq. (16). Everything else is the same as for

Fig. 3. The conclusions regarding the sensitivity of

the fast- and slow-wave speeds to the parameter a,

drawn from Fig. 4, remain the same as for Fig. 3,

except that the increasing porosity virtually elimi-

nates the realistic existence of the slow wave, whose

speed vanishes.

We infer that, for all practical purposes, the effect

of the tortuosity can be neglected at all frequencies,

low and high, for the conventional compressional

wave, for which a does not serve as a significant

governing parameter. The effect of a is only of

interest as far as the slow wave (the wave of the

second kind) is concerned.

An important conclusion is also made. We have

earlier established that the behavior of the tortuosity a
for any realistic porous structure can be supposed to

be unpredictably complex. On the other hand, the

speed of the wave of the second kind, based on Biot’s

theory, depends significantly on this parameter. We

conclude that the properties of the wave of the second

kind are unpredictable for any practical situation,

which is an inherent limitation in the applications of

Biot’s theory.

3.5. Other theoretical calculations of tortuosity

There were attempts in the past to theoretically

calculate the tortuosity (or the equivalent coefficients

q11, q12, and q22 in Eq. 1). Hovem and Ingram (1979,

Eq. 8) theoretically derived an expression for q12.

Their simple equations of motion (Hovem and

Ingram 1979, Eqs. 6) only include a phenomenolog-

ically defined friction force and do not contain a

driving force; in spite of this, a sinusoidally varying

solution is assumed. This is incorrect, because an

equation with damping and without a driving force

cannot support a sinusoidal solution. As a result, a

contradiction is obtained. Specifically, Hovem and

Ingram obtain q12 by cross-comparing the coeffi-

cients in their re-written equations of motions (7)

with the coefficients in the respective terms of

Eqs. (6.5) of Biot (1956a). Although the authors only

deduce q12 from this comparison, the coefficients q11

and q22 can be obtained as well. For example, the

comparison implies that q11 ¼ qs � q12 and

q22 ¼ qf � q12, which are not the correct properties

of the coefficients in Eqs. (1).

Bedford et al. (1984) propose a different method

of calculating q12 from the original Biot equations.

They substitute the solutions in the form u ¼ eixt and

U ¼ U0eixt directly into one of Biot’s equations of

motion for the aggregate (Bedford et al.’s Eq. 2,

which is equivalent to the second of Eqs. 6.7 of Biot

1956a). The result is solved for q12 as a function of

the complex amplitude U0 (Bedford et al. 1984,

Eq. 7) (q12 is –c in Bedford et al.’s notation). The

authors then substitute the known solutions of the

Navier–Stokes equations for U0 for one-dimensional

cylindrical geometries into their expression for q12,

resulting in a frequency-dependent behavior of this

a

b

Figure 4
Effect of tortuosity on wave velocities. u = 0.8 and d =

ffiffiffiffiffiffiffiffiffiffi
16=3

p
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coefficient (Bedford et al. 1984, Fig. 8). We note that

this algorithm of finding q12 is flawed, too, because

the solutions of the Navier–Stokes equations are not

necessarily the solutions of the Biot equations. As a

result, Bedford et al.’s approach leads to a paradox as

well. Biot (1956a, Eqs. 6.7) has two coupled equa-

tions of motion for the aggregate, each containing

q12. Bedford et al. resolved q12 from the second of

these equations. We observe that an expression for

q12 can also be obtained from the first of Biot’s

equations (equivalent to Bedford et al.’s Eq. 1). The

resulting expressions for q12 must be equal. Equating

them and solving the result for U0 leads to

U0 ¼ ðu�1Þqs

uqf
. The latter result is paradoxical, since

it means that U0 is constant and independent of

frequency, which contradicts the original solution of

the Navier–Stokes equation used (Eq. 11 of Bedford

et al.) and the authors’ prior conclusion that q12 was

frequency-dependent (Bedford et al. 1984, Fig. 8).

Formally speaking, this paradox demonstrates that

the phenomenological Biot equations are incompat-

ible with the Navier–Stokes equations.

3.6. Measurements of tortuosity

Is tortuosity truly a free parameter, or can it be

measured? Measurements of a have also been

proposed.

Brown (1980), based off of a vague analogy

between the flow of ideal fluid and electrical-current

flow, obtained the difference between what he calls

the ‘‘apparent and actual’’ fluid densities, which he

arbitrarily equates to Biot’s ‘‘additional mass’’ qa,

qa ¼ qf ðk� 1Þ, where k is Brown’s ‘‘coupling coef-

ficient’’, k ¼ Fu, and F is the electrical-resistivity

formation factor (the ratio between the aggregate and

the fluid resistivities) (Brown 1980, Eqs. 7, 8). From

one of Biot’s relations (Biot 1956a, Eqs. 3.18), this

means that q12 ¼ �qa ¼ qf ð1 � kÞ, and q12 thus

could be measured by electrical means. Brown (1980,

p. 1269) also claims that this result is valid for high

frequencies. For the given fluid density, porosity, and

electrical properties, the high-frequency q12 (and,

therefore, a) are, therefore, constant and independent

of frequency, which is in conflict with the theoretical

calculation of a showing no high-frequency limit

(Eq. 30 and Fig. 2). Note that Johnson et al. (1987,

Eq. 2.8) use Brown’s result to support the existence

of the high-frequency limit of the tortuosity a.

Further, Johnson et al. (1982, p. 1841), followed by

Zhou and Sheng (1989, Eq. 27), directly equate

Brown’s high-frequency coupling coefficient k with

a. This is incorrect. Equating Brown’s q12 with q12

from Eq. (1), qf 1 � kð Þ ¼ 1 � að Þuqf , yields

k ¼ 1 � ð1 � aÞu, which is not the same as k ¼ a.

The dynamic-permeability model developed by

Zhou and Sheng (1989), therefore, also treats the

tortuosity as a constant quantity at high frequencies.

The authors report its numerical values ranging from 1

to 24 for three periodic models of porous media (Zhou

and Sheng 1989, p. 12034 and Table 1), although no

details are given as to what specific formulae for the

tortuosity were used to calculate those values.

Johnson (1980) proposed to determine the tortu-

osity from the measured speed C4 of the fourth sound

in superfluid 4He at low temperatures. The relation

between the experimentally determined value CE
4 in a

superfluid-filled porous solid and the theoretical

speed C0
4 in the pure superfluid is CE

4 ¼ C0
4=n, where

n is the ‘‘index of refraction’’ (Johnson 1980, Eq. 5).

On the other hand, in the stiff-frame limit (Kf 	 Kfr,

lfr), the equation for the phase velocity of Biot’s

slow-wave at high frequencies (Eq. 17 with the

negative sign at the root) reduces to

cslow ¼ ðKf =aqf Þ1=2 ¼ cf =a1=2, where cf is the sound

velocity in the pure fluid. Based on the analogy

between the two expressions, Johnson (1980) argues

that the fourth sound in the superfluid is Biot’s slow

wave, therefore, n ¼
ffiffiffi
a

p
, and a can thereby be

measured in acoustic experiments on porous samples

filled with liquid 4He. We make two observations in

regard of this argument. First, the similarity between

the two expressions does not guarantee that they

describe the same physical phenomenon, unless the

fourth sound in a porous solid is governed by the Biot

equations. The latter has not been shown. Second, n is

a purely geometrical quantity (Johnson 1980,

p. 1066), and the high-frequency measurements in

liquid helium will yield a constant value. This is

again in conflict with the exact calculation of a, based

on its original definition, which shows strong fre-

quency dependence (Fig. 2).

Johnson et al. (1994a, b) report successful exper-

imental verification of the theoretical predictions of
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the speed and attenuation of the fast and slow waves

based on their measurement of tortuosity. One should

remember, though, that an additional free parameter

(K in their original notation) was specifically fit to

match the data (Johnson et al. 1994, pp. 109–110).

4. Structural factor and its effect on wave velocities

We now investigate the effect of the structural

factor on the propagation of the fast and slow waves.

As we have established, the effect can be expected at

intermediate frequencies.

Unlike tortuosity, the structural factor has no

particular physical meaning, except quantifying the

geometrical properties of the porous space in largely

unknown ways. Biot (1956b, Eqs. 4.31–4.34) specu-

lated that d may range from
ffiffiffiffiffiffiffiffiffiffi
16=3

p
to

ffiffiffiffiffiffiffiffiffiffi
8 � 3

2

q
,

although the choice of this interval had no particular

justification. It should be noted that another quantity

has been frequently invoked in the literature as a

substitute for Biot’s d. Biot’s theoretical expressions

for the frequency parameter j in Eq. (2) for the slit-

and tube-like pores have the form j ¼ aðx=mÞ1=2
,

where a is a characteristic pore width (Biot 1956b,

Eqs. 2.14, 3.11). It has been proposed that the

quantity a, named the ‘‘pore-size factor’’, be consid-

ered the free geometric parameter (Stoll 1974, p.27;

Mavko et al. 2009, p. 269). As comparison with

Eq. (2) shows, both a and d have the same effect on

j, being scaling factors before the square root of the

frequency. In the following, we will keep Biot’s

original structural parameter d as the measure of the

geometric complexity of the porous space. In the

absence of the theoretical constraints on its values for

complex geometries, d (or a) became mere formal

fitting parameters.

Figure 5 presents the frequency dependences of

the fast (a) and slow (b) wave velocities for two end

values of d, d =
ffiffiffiffiffiffiffiffiffiffi
16=3

p
and a factor-of-fifty greater

value d = 50
ffiffiffiffiffiffiffiffiffiffi
16=3

p
. As already noted, there is sig-

nificant uncertainty in ascertaining the actual range in

which d can change. The low value was selected as

the minimum one used by Biot. Regarding the high

value, we note that the pore-size parameters a found

by Stoll (1974, Table 1) by fitting experimental data

vary by a factor of 515, and those found by Gurevich

et al. (1999, Table 1) by a factor of 46. We consider

the variability reported by Stoll to be rather extreme

and, for the illustrative purposes, chose to use the

range obtained by Gurevich et al., as it was deter-

mined by simulating the data from much more recent

and well established experiments. We will make

more comments on the variability of the structural

factor further in this section.

a

b

c

Figure 5
Effect of structural factor on wave velocities. u = 0.5 and a = 1
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In Fig. 5, the tortuosity was fixed at a = 1, rep-

resentative of the most used literature values, and

u = 0.5. The elastic constants are the same as in

Figs. 3 and 4. The calculations were performed

through Eq. (11). As Fig. 5 demonstrates, the struc-

tural factor affects the wave speeds at intermediate

frequencies only as anticipated. The effect of

increasing d is similar to that of increasing a (cf.

Figs 3 and 5): the velocities of both the wave of the

first and the second kind become lower, and the effect

on the slow wave is by far stronger. The sensitivity to

the change in the parameter d across its full range is

illustrated in Fig. 5c, which plots c(d =
ffiffiffiffiffiffiffiffiffiffi
16=3

p
)/

c(d = 50
ffiffiffiffiffiffiffiffiffiffi
16=3

p
) for both waves. The fast wave is

largely insensitive to the change in the structural

parameter (its speed varies by about 3 percent), while

the slow-wave speed varies by about a factor of five.

What is important is that the effect of a, across its full

range, on the slow-wave speed is still a factor of two

stronger in the same frequency band (cf. Figs 3c and

5c). We thus infer that the influence of d overall is

insignificant compared with the respective effect of a,

at all frequencies. The conclusion is that the structural

factor is not a significant free parameter of Biot’s

theory and can practically be ignored, its effect being

dwarfed by that of the tortuosity. The tortuosity a
becomes the only free parameter of the theory, and it

is only important for the calculation of the slow

waves at high frequencies.

As noted in this section, a large variability of the

pore-size factor up to two orders of magnitude was

reported by Stoll (1974, Table 1) and Gurevich et al.

(1999, Table 1). In fitting the parameter a, both studies

fixed the tortuosity a at constant values. The experi-

mental data simulated by Gurevich et al. and part of

the data fitted by Stoll were in the MHz frequency

range. Considering our estimated range of change in

the characteristic frequency fc from approximately 102

to 106 Hz, it is most likely that the simulated data lay

in the ‘‘high-frequency’’ range of Biot’s theory where

the effect of the pore-size factor is negligible com-

pared to the effect of a. Fitting the data letting a be

free while fixing a could then produce an artificially

large variation of the former, given that it had to

change substantially to have any pronounced influence

on the simulated waves. A parameter trade-off may

have occurred, which needs to be taken into account in

interpreting the significance of the wide range of the

pore-size factor reported.

Also, as Eq. (33) shows, we chose a particular form

of Biot’s correction function FðjÞ derived for the slit

duct. The close quantitative similarity between the

functions FðjÞ obtained by Biot for the cylindrical

tube and the slit (cf. Biot 1956b, Figs. 2 and 4) sup-

ports a hypothesis that their form may remain similar

for more complex geometries, although this is not

guaranteed. This imparts an additional source of

uncertainty to the simulations of the effect of the

structural factor, which was not investigated here.

5. Conclusions

Our conclusions can be formulated as follows.

The tortuosity a is the only significant free

parameter of Biot’s theory, whose effect is limited to

the waves of the second kind in the high-frequency

range. The conventional compressional wave (wave of

the first kind) is largely insensitive to the changes in

tortuosity at any frequencies. The structural factor d
affects the wave properties at intermediate frequencies

only and, even in that interval, its effect is practically

dwarfed by the one of the tortuosity. The effect of d
can thus be neglected in practical calculations.

At low frequencies, there are no free parameters.

The wave of the second kind is virtually non-existent

(its speed vanishes). Considering that the frequency

band of interest to seismic exploration is approxi-

mately 10–102 Hz and that the change in the

characteristic frequency for rocks is estimated as 102–

106 Hz, the ‘‘seismic’’ range in f/fc is approximately

10-5–1; that is, the ‘‘seismic’’ case is largely immune

to the uncertainties in the theory that may be associ-

ated with the lack of constraints on its free parameters.

The tortuosity has the meaning of the mean square

of the velocity of the pore fluid relative to the pore

wall, normalized by the square of the mean relative

velocity. Its exact calculation requires the knowledge

of the full fluid-velocity field. Analytical calculation

of a is possible for the model of a slit-like pore

considered by Biot but not for more geometrically

complex situations. For the latter, numerical calcu-

lation of a may be possible, as long as the flow field

can be computed. The tortuosity for the slit is
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constant at the values close to unity at f/fc . 1, where

flow is of Poiseuillean type, and rises infinitely at

higher frequencies, where the flow changes phase

across the width of the channel. It thus has no high-

frequency limit. The practical range of variability in

a, inferred from this model, is approximately 1–100.

The functional form of the tortuosity for more

complex geometries is unknown and can be hypoth-

esized to be unpredictably complex for realistic earth

materials. Since the properties of the wave of the

second kind depend substantially on this parameter at

high frequencies, they cannot be predicted by the

theory for any realistic situation. This is an inherent

limitation of the Biot theory, restricting its usefulness

for the prediction of wave propagation in the high-

frequency range.
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