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Abstract

Mechanisms underlying obesity-associated reproductive impairment are ill defined. Hyperinsuline-
mia is a metabolic perturbation often observed in obese subjects. Insulin activates phosphatidyli-
nositol 3-kinase (PI3K) signaling, which regulates ovarian folliculogenesis, steroidogenesis, and
xenobiotic metabolism. The impact of progressive obesity on ovarian genes encoding mRNA in-
volved in insulin-mediated PI3K signaling and xenobiotic biotransformation [insulin receptor (Insr),
insulin receptor substrate 1 (Irs1), 2 (Irs2), and 3 (Irs3); kit ligand (Kitlg), stem cell growth factor
receptor (Kit), protein kinase B (AKT) alpha (Akt1), beta (Akt2), forkhead transcription factor (FOXO)
subfamily 1 (Foxo1), and subfamily 3 (Foxo3a), microsomal epoxide hydrolase (Ephx1), cytochrome
P450 family 2, subfamily E, polypeptide 1 (Cyp2e1), glutathione S-transferase (GST) class Pi (Gstp1)
and class mu 1 (Gstm1)] was determined in normal wild-type nonagouti (a/a; lean) and lethal yel-
low mice (KK.CG-Ay/J; obese) at 6, 12, 18, or 24 weeks of age. At 6 weeks, ovaries from obese
mice had increased (P < 0.05) Insr and Irs3 but decreased (P < 0.05) Kitlg, Foxo1, and Cyp2e1
mRNA levels. Interestingly, at 12 weeks, an increase (P < 0.05) in Kitlg and Kit mRNA, pIRS1Ser302,
pAKTThr308, EPHX1, and GSTP1 protein level was observed due to obesity, while Cyp2e1 mRNA
and protein were reduced. A phosphoramide mustard (PM) challenge increased (P < 0.05) ovarian
EPHX1 protein abundance in lean but not obese females. In addition, lung tissue from PM-exposed
animals had increased (P < 0.05) EPHX1 protein with no impact of obesity thereon. Taken together,
progressive obesity affected ovarian signaling pathways potentially involved in obesity-associated
reproductive disorders.
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Summary Sentence

Obesity alters ovarian signaling pathways that regulate primordial follicle activation and chemical
biotransformation, thereby potentially contributing to reproductive dysfunction.

Key words: ovary, obesity, phosphatidylinositol-3 kinase, ovotoxicant.

Introduction

The adverse effects of obesity on reproductive health have been
documented, and include reduced conception and implantation
[1, 2], impaired fecundity [2–5], increased infertility [1, 6], and an in-
crease in offspring birth defects [7–9]. Obesity affects approximately
30% of US adults, with higher levels observed in African American
(∼48%) and Hispanic (∼43%) populations [10]. The same pattern
is true in children, with approximately 17% being obese, and there
are differential obesity rates in African American (∼20%) and His-
panic (∼22%) children. Thus, obesity affects all communities, but
some are more affected than others. The adverse effects of obesity
on reproductive health have been documented, and include reduced
conception and implantation [29, 30], impaired fecundity [30–33],
and infertility [29, 34]. Obese mothers have increased risk for mis-
carriage [35], poor oocyte quality [36], and birth defects in their
offspring [35]. It is also recognized that increased body mass index
is a risk factor for many cancers, including ovarian cancer [37]. Mor-
tality rates from ovarian cancer are greater in overweight and obese,
relative to lean, women [38] and are also higher in African American
relative to Caucasian women [39]. Furthermore, although studies are
limited, a recent report positively associated human offspring cancer
incidence with maternal obesity [40].

The mammalian ovary is the female gonad responsible for oocyte
and steroid hormone production. At birth, a finite number of primor-
dial follicles are present, arrested in the diplotene stage of prophase
1 [11]. Once primordial follicles are depleted, the female enters into
ovarian senescence. A number of chemical exposures can result in
follicle depletion leading to early ovarian senescence [12–16]. In
addition, DNA damage [17] and altered folliculogenesis [18] due to
ovotoxicant exposure have been reported. The ovary has the capacity
to respond to such exposures through increased abundance of pro-
teins involved in chemical biotransformation, including cytochrome
P450 isoform 2E1 (Cyp2e1) [19–21], microsomal epoxide hydrolase
(Ephx1) [22, 23], glutathione S-transferase Pi (Gstp1) [15, 24], and
glutathione S-transferase Mu 1 (Gstm1) [25]. These enzymes are
principally involved in the detoxification of xenobiotic compounds;
however, their expression may also lead to bioactivation of some
environmental compounds [12, 13, 19, 20, 26, 27].

The phosphatidylinositol-3 kinase (PI3K) signaling pathway
plays a pivotal role in regulating ovarian folliculogenesis [28–31] and
steroidogenesis [32–35]. We [36] and others [37–40] have demon-
strated that obesity alters insulin-mediated signaling pathways, in-
cluding PI3K. In addition, we have determined that PI3K signaling
regulates abundance of the xenobiotic metabolism enzymes Gstp1,
Gstm1, Ephx1, and Cyp2e1 [18, 41–43]. Altered expression of genes
involved in these pathways could sabotage proper ovarian function
and consequently lead to impaired fertility. Adverse reproductive
outcomes including anovulation, impaired fecundity, and premature
ovarian failure can result from unregulated folliculogenesis. In the
absence of ovarian function, females have a greater risk for devel-
opment of gynecological cancers, osteoporosis, and cardiovascular
disease [16, 27, 44]. We have demonstrated that obese female mice
have reduced numbers of preantral follicles, relative to their lean

counterparts [45]; however, the mechanisms involved remain un-
clear.

Despite a strong positive correlation between obesity and im-
paired reproductive capacity, the underlying mechanisms have not
been clearly defined. To understand the onset and duration of
changes in PI3K and chemical metabolism gene during obesity, we
designed a study using the agouti lethal yellow (KK.Cg-Ay/J) mice,
an excellent model for progressive obesity [46–48]. The impact of
obesity onset and progression on expression of ovarian genes en-
coding insulin signaling, PI3K pathway members, and enzymes in-
volved in ovarian xenobiotic biotransformation were investigated.
Additionally, we challenged both lean and obese mice with the ovo-
toxicant, phosphoramide mustard (PM; the ovotoxic metabolite of
cyclophosphamide [CPA]), and evaluated the response of EPHX1 to
PM exposure in ovarian and lung tissue.

Materials and methods

Reagents
Phosphoramide mustard was obtained from the National
Institutes of Health National Cancer Institute (Bethesda,
MA). D-Glucose, 2-beta-mercaptoethanol, 30% acrylamide/0.8%
bis-acrylamide, ammonium persulfate, glycerol, N′,N′,N′,N′-
Tetramethyl-ethylenediamine, Tris base, Tris HCl, sodium chloride,
Tween-20, bovine serum albumin (BSA), ascorbic acid (vitamin C),
phosphatase inhibitor, protease inhibitor, and transferrin were pur-
chased from Sigma-Aldrich Inc. (St. Louis, MO). Custom designed
primers were obtained from the DNA facility of the Office of Biotech-
nology at Iowa State University. Hanks balanced salt solution (with-
out CaCl2, MgCl2, or MgSO4) and superscript III one-step real-time
polymerase chain reaction (RT-PCR) System were purchased from
Invitrogen Co. (Carlsbad, CA). RNAlater was obtained from Am-
bion Inc. (Austin, TX). RNeasy Mini kit, QIAshredder kit, RNeasy
MinElute kit, and QuantiTect SYBR Green PCR kit were purchased
from Qiagen Inc. (Valencia, CA). Ponceau S was purchased from
Fisher Scientific (Waltham, MA). Restore PLUS Western Blot Strip-
ping Buffer was purchased from Thermo Scientific (Rockford, IL).
SignalFire ECL Reagent, goat anti-rabbit secondary antibody, anti-
pAKTThr308, and anti-pIRS1Ser302 antibodies were from Cell Signal-
ing Technology (Danvers, MA). Anti-FOXO3 and anti-GSTP1 an-
tibodies were purchased from Millipore (Temecula, CA). Donkey
anti-goat secondary antibody was purchased from Pierce Biotech-
nology (Rockford, IL). Anti-CYP2E1 antibody was purchased from
Abcam (Cambridge, MA). Anti-mEH (EPHX1) antibody was pur-
chased from Detroit R&D, Inc. (Detroit, M).

Animal procedures and tissue collection
All experimental animal protocols used in this study were approved
by the Iowa State University Animal Care Committee. Four-week-
old female normal wild-type nonagouti (a/a; designated lean; n =
20) and agouti lethal yellow (KK.Cg-Ay/J; designated obese; n =
20) mice were purchased from the Jackson Laboratory (Bar Harbor,
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Table 1. Primer sequences used for quantitative RT-PCR.

Gene name Forward primer sequence (5′-3′) Reverse primer sequence (5′-3′)

Irs2 GAA GCG GCT AAG TCT CAT GG GAC GGT GGT GGT AGA GGA AA
Irs3 TCG GCT CAC CGT TTC CTT G TCG CTC TCG TAG CAC TCC A
Akt2 TGG ACC ACA GTC ATC GAG AG CTT GTA ATC CAT GGC GTC CT
Foxo1 GAG TGG ATG GTG AAG AGC GT TGC TGT GAA GGG ACA GAT TG
Foxo3a CTG GGG GAA CCT GTC CTA TG TCA TTC TGA ACG CGC ATG AAG

Maine) as previously described [45]. The mice were housed at the
animal facility at Iowa State University under identical conditions of
room temperature (21◦C–22◦C), lighting (12 h light:12 h darkness
cycle), and ad libitum access to feed and water until 6, 12, 18, or
24 weeks of age. Phenotypically, the lethal yellow mice had elevated
body weight (42.2, 43.2, 48 g at 12, 18, and 24 weeks, respectively
[45]), and fasting glucose levels from 12 weeks onwards [45]. Estrous
cyclicity was also impacted by shorter time spent in estrus and longer
time in diestrous [45]. In addition, primordial and small primary
follicle numbers were decreased, while secondary and antral follicle
numbers were increased in number with progressive obesity [45].
At the end of each experimental time point, mice were euthanized
by CO2 asphyxiation in the proestrus stage of the estrous cycle as
determined by vaginal cytology. Ovaries were collected, cleaned of
excess fat, and stored in RNAlater at –80◦C for RNA and protein
analyses.

In vivo phosphoramide mustard exposure
and tissue collection
A separate group of normal wild-type nonagouti (a/a; designated
lean; n = 10) and agouti lethal yellow (KK.Cg-Ay/J; designated
obese; n = 10) mice aged 15 weeks were intraperitoneally (ip) dosed
once with sesame oil or PM (95%; 25 mg/kg) (n = 5 per group). This
dose was chosen based on the literature to cause primordial follicle
loss, but not to completely eliminate the follicular pool [49]. Mice
were euthanized 3 days after the end of dosing in their proestrus
phase of the estrous cycle as determined by vaginal cytology. Ovary
and lung tissue from each mouse was preserved in RNAlater at –
80◦C for RNA and protein isolation.

RNA isolation, first-strand cDNA synthesis, and
quantitative real-time polymerase chain reaction
Total RNA was isolated from both lean and obese mice using Qiagen
RNeasy Mini Kit (at 6, 12, 18, and 24 weeks, n = 3–4 per group per
time point) as per the manufacturer’s protocol [45]. Briefly, ovaries
were lysed and homogenized using a hand-held homogenizer fol-
lowed by applying the homogenate to a QIAshredder column with
subsequent centrifugation at 16100 RCF for 2 min at room tem-
perature. The resulting supernatant was applied to an RNeasy Mini
column, allowing RNA to bind to the filter cartridge. Following
washing, RNA was eluted from the filter and concentrated using
an RNeasy MinElute Kit according to the manufacturer’s proto-
col. The total RNA was eluted using 14 μL of RNase-free water
and concentration determined using an ND-1000 Spectrophotome-
ter (λ = 260/280 nm; NanoDrop technologies, Inc., Wilmington,
DE). For cDNA synthesis, RNA (0.5 μg) was reverse-transcribed us-
ing Invitrogen Superscript III Reverse Transcriptase according to the

manufacturer’s protocol. cDNA (2 μL; 1:25 dilution) was amplified
on an Eppendorf Mastercycler using a Quantitect SYBR Green PCR
kit and primers specific for mouse Gapdh, Insr, Irs1, Kitlg, cKit,
Akt1, Gstm1, Gstp1, Ephx1, and Cyp2e1 (see sequences in [36]),
Irs2, Irs3, Akt2, Foxo1, and Foxo3a (for sequences see Table 1).
The PCR cycling program consisted of a 15-min hold at 95◦C and
40 cycles of denaturing for 15 at 95◦C, annealing for 15 s at 58◦C,
and extension at 72◦C for 20s. Product melt conditions were deter-
mined using a temperature gradient from 72◦C to 99◦C with a 1◦C
increase at each step. A single product was confirmed per reaction.
Three replicates of each sample were included. The relative mRNA
expression for each gene was normalized using the housekeeping
gene Gapdh and relative fold-change calculated using the 2-��CT

method. The results are presented as mean fold-change ± standard
error relative to the lean-matched control group.

Protein isolation and western blot analysis
At each time point (6, 12, 18, or 24 weeks of age, n = 3–4 per
group per time point), total ovarian protein was isolated and west-
ern blotting was performed as previously described [45]. Ovaries
were homogenized in 300 μL of ice-cold tissue lysis buffer and pro-
tein concentration quantified using a standard bicinchoninic acid
protocol on a 96-well assay plate. Equal total protein (20 μg) was
separated on a 10%–12% SDS-PAGE and subsequently transferred
to nitrocellulose membranes. Ponceau S staining was performed to
visualize and confirm equal amount of protein loading and trans-
fer. Following blocking for 2 h at room temperature, membranes
were probed with specific primary antibodies [Rabbit Anti-GSTP1
(1:200), Goat anti-EPHX1 (1:500), Rabbit anti-pIRS1Ser302 (1:200),
Rabbit anti-pAKTThr308 (1:250), Rabbit anti-FOXO3 (1:250), Rab-
bit anti-CYP2E1 (1:200)] in 5% BSA in TTBS for 24–48 h at 4◦C.
HRP-conjugated secondary antibodies (1:10000 – 1:20000) were
added for 1 h at room temperature, and membrane-bound HRP was
washed three consecutive times for 5 min each time in TTBS. Autora-
diograms were visualized on X-ray film following 10-min incubation
of membranes with 1X SignalFire ECL reagent. Densitometry of the
appropriate sized bands was measured using Carestream Molecular
Imaging software version 5.0 (Carestream Health Inc., Rochester,
NY) which eliminates background noise. Densitometric values of
appropriate target proteins were normalized to Ponceau S staining
prior to statistical analysis.

Statistical analysis
Statistical analyses were performed using the unpaired t-test function
of GraphPad Prism 5.5 software with a statistical significance level
set at P < 0.05. A trend toward a biologically meaningful difference
between treatments was considered if the P-value was less than 0.1.
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Figure 1. Obesity increases ovarian mRNA expression of insulin signaling members. Total ovarian RNA was isolated from lean or obese mice at 6, 12, 18, or
24 weeks (n = 4, per group per time point), reverse transcribed, and qRT-PCR performed to quantify mRNA levels of (A) Insr, (B) Irs1, (C) Irs2, and (D) Irs3.
Target gene mRNA expression values were normalized to Gapdh as a housekeeping gene. Results are presented as relative fold-change means ± SEM. Asterisk
indicates significant difference from age-matched lean females at P < 0.05; dagger indicates P < 0.1.

Results

Obesity increases ovarian mRNA expression of insulin
signaling members
Since obese mice displayed reduced glucose clearance rate in addi-
tion to having higher fasting blood glucose levels [45], we sought
to determine the impact of progressive obesity on ovarian mRNA
expression of insulin signaling members. At 6 weeks of age, ovaries
from the obese mice had increased Insr (Figure 1A, P < 0.05) and
Irs3 (Figure 1D, P < 0.01) but showed no difference in either Irs1
or Irs2 mRNA levels relative to ovaries from the lean mice. At 12
weeks, only Irs1 mRNA was increased (Figure 1B, P < 0.001) with
obesity but other members were not impacted by obesity. Similarly,
ovaries from obese mice displayed increased Irs1 (Figure 1B, P <

0.001) and Irs3 (Figure 1D, P < 0.05) without significant effect on
Insr (Figure 1A) and Irs2 (Figure 1C) mRNA levels at 18 weeks of
age. In the 24-week-old group, obesity increased ovarian expression
of Insr (Figure 1A, P = 0.05), Irs1 (Figure 1B, P < 0.0001), Irs2
(Figure 1C, P < 0.01), and Irs3 (Figure 1D, P < 0.01).

Progressive obesity increases ovarian phosphorylated
insulin receptor substrate 1 protein
Following the impact of obesity on ovarian mRNA levels of insulin
signaling members, we investigated protein levels of pIRS1Ser302 (Fig-
ure 2). Although there was no difference in phosphorylation of IRS1
protein at the serine 302 site at 6 weeks, relative to lean-matched
controls, ovaries from obese mice showed a tendency for increased
pIRS1Ser302 protein levels at 12 weeks (P = 0.07), and increased
protein at 18 (P < 0.05) and 24 (P < 0.01) weeks (Figure 2).

Figure 2. Progressive obesity increases ovarian phosphorylated insulin re-
ceptor substrate 1 protein. Total ovarian protein was isolated from lean (L)
and obese (O) mice at 6, 12, 18, or 12 weeks (n = 3–4 per group per time
point). Protein expression of pIRS1Ser302 was determined by western blotting,
followed by densitometric quantification of the appropriate protein band us-
ing Carestream Molecular Imaging software. Bars represent means ± SEM
in arbitrary units. Asterisk indicates significant difference from age-matched
lean females at P < 0.05; dagger indicates P < 0.1.
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Figure 3. Ovarian Kitlg/Kit-PI3K pathway members are elevated during obesity. Total ovarian RNA was isolated from lean or obese mice at 6, 12, 18, or 24 weeks
(n = 4, per group per time point), reverse transcribed, and qRT-PCR performed to quantify the mRNA levels of (A) Kitlg, (B) Kit, (C) Akt1, (D) Akt2 (E) Foxo1, and
(G) Foxo3a. Target gene mRNA expression values were normalized to Gapdh as a housekeeping gene. Results are presented as relative fold-change means ±
SEM. Asterisk indicates significant difference from age-matched lean females at P < 0.05.

Ovarian Kitlg/cKit-PI3K pathway members are elevated
during obesity
At 6 weeks, ovaries from the obese group had lower (P < 0.01)
Kitlg (Figure 3A) and Foxo1 (Figure 3E) but not Kit, Akt1, Akt2, or
Foxo3a mRNA levels than ovaries from lean females (Figure 3). At
12 weeks, there was a marked increase in ovarian Kitlg (Figure 1A,
P < 0.05), Kit (Figure 1B, P < 0.05), and Foxo1 (Figure 1E, P
< 0.0001) in obese compared to lean females, but there was no
impact of obesity on Akt1 (Figure 3C), Akt2 (Figure 3D), or Foxo3a
(Figure 3F) mRNA expression. Likewise, at 18 weeks, obesity did
not affect ovarian Akt1 (Figure 3C), Akt2 (Figure 3D), and Foxo1
(Figure 3E) mRNA levels, but increased Kitlg (Figure 3A, P < 0.001),
Kit (Figure 3B, P < 0.0001), and Foxo3a (Figure 3E, P < 0.01)
mRNA levels. There was increased (P < 0.01) Kitlg, Kit, Akt1, Akt2,
Foxo1, and Foxo3a mRNA levels in ovaries from obese compared
to lean mice at 24 weeks (Figure 3A–F).

Ovarian phosphorylated AKT is increased by obesity
without impacting FOXO3 protein levels
There were no differences in ovarian pAKTThr308 protein levels be-
tween lean and obese females at 6 and 12 weeks, but obesity in-
creased (P < 0.01) pAKTThr308 protein expression at 18 and 24
weeks (Figure 4A). Total ovarian FOXO3A protein levels did not
differ between lean and obese groups at any time points (Figure 4B).

Progressive obesity alters mRNA expression of ovarian
xenobiotic metabolism genes
Despite lack of a genotype effect on Gstm1, Gstp1, and Ephx1
mRNA levels at 6 weeks [50], obesity increased (P < 0.001) ovarian
Gstm1 (Figure 5A) and Ephx1 (Figure 5C) mRNA expression at
12, 18, and 24 weeks. On the contrary, ovarian Cyp2e1 mRNA
expression was lower (P < 0.001) in the obese group at all of the time
points investigated (Figure 5D). Gstp1 mRNA levels were decreased
(P < 0.05) by obesity at 12 weeks; however, at 24 weeks there was a
tendency (P = 0.06) for increased ovarian Gstp1 in obese versus lean
females (Figure 5B). At 18 weeks, there was no difference between
lean and obese females in ovarian Gstp1 mRNA levels (Figure 5B).

Abundance of ovarian xenobiotic metabolism proteins
is impacted by increased body mass
At 6 weeks, there was no difference in ovarian EPHX1, CYPE1, and
GSTP1 protein levels between the two groups of mice (Figure 6).
Relative to their matched lean controls, obese females displayed a
higher (P < 0.05) expression of ovarian GSTP1 at 18 and 24 weeks
(Figure 6A and C). In a similar manner to the mRNA results, ovaries
from obese mice had increased ovarian EPHX1 protein levels relative
to their lean counterparts at 12 (P < 0.05), 18 (P < 0.01), and 24
(P < 0.0001) weeks (Figure 6B and D). Likewise, CYP2E1 protein
expression was reduced in ovaries from obese females compared to
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Figure 4. Ovarian phosphorylated AKT is increased by obesity without impacting FOXO3 protein levels. Total ovarian protein was isolated from lean (L) and
obese (O) mice at 6, 12, 18, or 12 weeks (n = 3–4 per group per time point). Protein expression was determined by western blotting, followed by densitometric
quantification of the appropriate protein bands using Carestream Molecular Imaging software. (A) pAKTThr308 and (B) FOXO3 protein levels. Bars represent
means ± SEM in arbitrary units. Asterisk indicates significant difference from age-matched lean females at P < 0.05.

Figure 5. Progressive obesity alters mRNA expression of ovarian xenobiotic metabolism genes. Total ovarian RNA was isolated from lean or obese mice at 6,
12, 18, or 24 weeks (n = 4, per group per time point), reverse transcribed, and quantitative RT-PCR performed to quantify the mRNA levels of (A) Gstm1, (B)
Gstp1, (C) Ephx1, and (D) Cyp2e1. Target gene mRNA expression values were normalized to Gapdh as a housekeeping gene. Results are presented as relative
fold-change means ± SEM. Asterisk indicates significant difference from age-matched lean females at P < 0.05; dagger indicates P < 0.1.

their lean littermates at 12 (P < 0.01), 18 (P < 0.05), and 24 (P <

0.01) weeks (Figure 6E and F).

Obesity alters ovarian EPHX1 in response
to phosphoramide mustard exposure
Lean mice exposed to PM had increased (P < 0.05) ovarian EPHX1
protein abundance (Figure 7A). Concurrent with our previous ob-
servations [50], obese females had basally higher (P < 0.05) levels
of ovarian EPHX1 relative to ovaries from lean mice. In contrast to
ovaries from lean mice, the EPHX1 response to PM exposure was
completely abrogated in obese mice (Figure 7A).

In lung tissue from lean and obese mice dosed with PM, there
was increased EPHX1 protein abundance (Figure 7B); however, the
response in the obese mice tended toward significance (P < 0.1)
while the response observed in the lean mice was greater (P < 0.05;
Figure 7B).

Discussion

Obese mothers have increased risk for miscarriage [51], poor oocyte
quality [52], and birth defects in their offspring [51]. In a recent
study, we discovered that ovaries from obese females may have
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Figure 6. Abundance of ovarian xenobiotic metabolism proteins is impacted by increased body mass. Total ovarian protein was isolated from lean (L) and
obese (O) mice at 6, 12, 18, or 12 weeks (n = 3–4 per group per time point). Protein expression was determined by western blotting, followed by densitometric
quantification of the appropriate protein band using Carestream Molecular Imaging software. (A, C) GSTP1, (B, D) EPHX1, and (E, F) CYP2E1 protein levels. Bars
represent means ± SEM in arbitrary units. Asterisk indicates significant difference from age-matched lean females at P < 0.05; dagger indicates P < 0.1.

increased susceptibility to environmental exposures due to increased
levels of EPHX1 and altered GST levels [50]. Additionally, obese
females had greater ovarian damage induced by the ovotoxicant
7,12-dimethylbenz[a]anthracene [50]. Although the mechanism(s)
remain unclear, we propose that ovarian biotransformation capac-
ity may be altered during obesity, leading to increased suscepti-
bility to ovotoxicant effects. Additionally, in a study of progres-
sive obesity, we demonstrated a reduction in preantral follicles in
obese females [45]. Since roles for PI3K signaling in oocyte viability
[53], primordial follicle activation [54–59], and ovarian chemical
metabolism [24, 25, 43] have been established, we also hypoth-
esized that impacts on ovarian biotransformation capacity during
obesity may be mediated through altered insulin-regulated PI3K sig-
naling. Since our previous study investigated a single time point
[50], we chose a model of progressive obesity in which to deter-
mine impacts of obesity onset and establishment on the endpoints of
interest.

Many rodent models of obesity have mutations in the satiety
hormone leptin (ob/ob) [60] or its receptor (db/db) [61]. While these
mutations result in rapid onset of obesity, they are rare in the human
population [48, 62]. The lethal yellow mouse has a deletion mutation
in the normal wild-type nonagouti (a/a) background which results in
ectopic expression of agouti [46, 48, 63, 64]. Hypothalamic agouti
overexpression inhibits the melanocyte stimulating hormone (MSH)
receptor [65] leading to hyperphagia due to hindering of the in-
hibitory effects of feeding imparted by alpha-melanocyte-stimulating
hormone (α-MSH) and cocaine- and amphetamine-regulated tran-
script [65, 66]. Subsequently, hyperphagia coupled with reduced
energy expenditure results in the development of progressive obesity
[46, 65]. Starting at 12 weeks of age, these mice are hyperinsuline-
mic [47] and hyperleptinemic [67], and display insulin [46] and lep-
tin [68] resistance. Additionally, premature reproductive failure is a
common phenotype of the lethal yellow mouse [67, 69, 70]. Elevated
insulin levels have been reported in both serum and follicular fluids
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Figure 7. EPHX1 is increased in lean but not obese ovaries in response to PM
exposure. Total ovarian protein was isolated from lean (L) and obese (O) mice
at dosed with PM at 15 weeks of age (n = 3–4 per group per time point). Pro-
tein expression was determined by western blotting, followed by densitomet-
ric quantification of the appropriate protein band using Carestream Molec-
ular Imaging software. (A) Ovarian and (B) lung EPHX1 protein abundance.
Bars represent means ± SEM in arbitrary units. Asterisk indicates signifi-
cant difference from age-matched lean females at P < 0.05; dagger indicates
P < 0.1.

of obese females [71, 72]. However, studies investigating whether
the ovary retains insulin sensitivity during hyperinsulinemia are con-
tradictory [36, 38, 39, 73]. We chose to perform evaluation of effects
of obesity on ovarian PI3K and chemical metabolism signaling at 6,
12, 18, and 24 weeks of age, since these ages have been characterized
in this model [47] and we have established the composition of the
follicular pool at these same endpoints [45].

Progressive obesity was associated with increased Irs1, Irs2, and
Irs3 mRNA as well as pIRS1Ser302 protein levels, perhaps indicating
that ovarian insulin signaling pathway retains activity in ovaries from
obese mice, supporting our previous data with both high fat diet-fed
mice [36] and the lethal yellow mouse [45]. The IRS1 contains sev-
eral tyrosine/serine phosphorylation sites that serve as docking sites
for numerous downstream mediators of insulin growth-promoting
and metabolic functions [74–77]. Although most serine phosphory-
lations of IRS lead to insulin signaling attenuation [76], phosphory-
lation of IRS1 at serine 302 in rodents, which corresponds to serine
307 of the human IRS1 [78, 79], is associated with insulin stim-
ulation and it is believed to have a positive action in subsequent
IRS1 tyrosine phosphorylations [77–79]. In several studies, inhibi-
tion of pIRS1Ser302 by glucose starvation or deprivation of short-term

amino acid correlates with decreased IRS1 tyrosine phosphorylation
and subsequent reduced insulin activity [76, 77, 80]. Also increased
pIRS1Ser302 has been observed during peripheral insulin resistance
in the skeletal muscle of both rodents [81] and humans [82, 83].
Whether the observed increase in ovarian pIRS1Ser302 protein levels
during progressive obesity in this study represents positive or nega-
tive feedback to insulin stimulation is hard to discern, but provides
further evidence that ovarian insulin signaling is sustained during
obesity.

In cultured human ovarian cortex, insulin alone or in combina-
tion with IGF-I and IGF-II increased the percentage of primordial
follicles transitioning to the primary stage [84]. In canines [85] and
fetal hamster cultured ovaries [86], elevated insulin concentrations
activated preantral follicular growth and viability, while insulin also
promoted the transition from primordial to primary follicle stage in
rat ovaries [87] and bovine cortical pieces [88]. Moreover, insulin
had an additive effect with Kit Ligand (KITLG) on increasing follicle
activation in cultured neonatal rat ovaries [87, 89]. These studies
suggest a functional role for insulin signaling in ovarian folliculoge-
nesis regulation. Insulin acting through its receptor and the receptor
substrate proteins can activate the PI3K-AKT-dependent signaling
pathway [90]. AKT activation involves two phosphorylations: one
at threonine 308 (Thr308) normally by phosphoinositide-dependent
kinase (PDPK1) and the other at serine 473 (Ser473) by mammalian
target of rapamycin complex 2 (mTORC2) [91–93]. In mouse liver
[94] or skeletal muscle [95] lacking IRS1 or IRS2, AKT Thr308
phosphorylation (pAKTThr308) is undetectable; however, AKT phos-
phorylation at Ser473 (pAKTSer473) is retained [96], thus pAKTSer473

may not be the most sensitive indicator of IRS-mediated PI3K-AKT
signaling [91, 97]. We demonstrate increased pAKTThr308 with obe-
sity progression indicating increased PI3K-AKT activation in obese
females. FOXO3 is a downstream AKT target that is negatively reg-
ulated upon AKT activation [28, 92, 98, 99]. We noted a trend for a
60% and 70% reduction in this protein in ovaries from obese mice
at 12 and 24 weeks, respectively, suggestive of increased activation
of insulin-PI3K/AKT signaling pathway during progressive obesity.
Hyperactivation of the PI3K-AKT-FOXO3 signaling pathway has
been shown to increase the rate of primordial follicles activation and
recruitment into the growing pool with eventual death of most of
those follicles, leading to accelerated ovarian senescence [30, 57, 59,
100, 101]. In support of this posit, we previously demonstrated re-
duced follicle numbers due to obesity from 12 weeks onward in the
lethal yellow mouse model [45].

In addition to insulin, PI3K-AKT-FOXO3a can be activated by
KITLG through its protein-tyrosine kinase receptor, KIT [98, 102,
103]. Kit is expressed in the oocyte [104–106], whereas Kitlg orig-
inates from the GC and TC [88, 107, 108]. In the ovary, KITLG
binding to KIT induces phosphorylation of the regulatory subunit of
PI3K and subsequent activation of AKT1 [98, 102, 103]. We pre-
viously found that that HFD-induced obesity increased Kitlg con-
comitant with increased Akt1 and decreased Foxo3a mRNA ex-
pression in murine ovaries [36]. In this study, we also observed
increased ovarian Kit and Kitlg mRNA concomitant with increased
pAKTThr308 protein in obese mice relative to their lean littermates.
The ovarian KITLG-KIT pathway plays a pivotal role in regula-
tion of ovarian folliculogenesis [107, 109–114] and steroidogenesis
[115]. In human ovarian follicles, blocking the KIT receptor using an
anti-KIT antibody, ACK2, induced ovarian follicular atresia [116].
KITLG supplementation promoted the transition of primordial to
the primary follicle stage in bovine ovarian cortical pieces [114], and
stimulated follicle activation in rodents [110, 112]. Taken together,
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our data support that activation of insulin-KITLG-KIT-AKT1 sig-
naling pathway is induced by obesity, and this could be a potential
mechanism underlying obesity-induced overactivation of primordial
follicles into the growing follicular pool previously noted in both this
mouse model [50] and rats [40].

In primary cultured rat hepatocytes, insulin administration de-
creased Cyp2e1 mRNA expression in a dose-dependent manner,
and this was reversible by either addition of glucagon or PI3K in-
hibitors (Wortmannin or LY294002) [117, 118]. Increased Cyp2e1
mRNA and/or CYP2E1 protein abundance have been reported dur-
ing diabetes [119–121], glucagon treatment [117], and starvation
[120, 122], physiological states that are normally associated with de-
creased insulin activity. Interestingly, EPHX1 expression pattern is
opposite to CYP2E1 during these physiological states. Insulin treat-
ment or refeeding increases Ephx1 mRNA, EPHX1 protein expres-
sion, and enzyme activity [122–124]; however, diabetes [122, 124],
glucagon [123], or starvation [122, 124] or PI3K inhibition [123]
decreases Ephx1 expression. Similar to the liver, opposing expres-
sion patterns of ovarian EPHX1 and CYP2E1 expression have been
previously reported [21, 36]. In this study, similar to the mRNA
results, there was an increase in ovarian EPHX1 with a concomitant
decrease in CYP2E1 protein levels in ovaries from obese females
compared to their age-matched lean counterparts.

In a similar manner to EPHX1 and CYP2E1, the expression and
activities of GST enzymes can be mediated through PI3K/AKT sig-
naling [24, 125, 126]. In male rats, the addition of insulin reversed
decreased hepatic GST activity that had been induced by diabetes
[124]. Also, refeeding (associated with insulin stimulation) restored
starvation-induced reduced liver GST enzyme activities [124]. We re-
cently observed increased ovarian levels of Gstm1 mRNA, GSTM1
and GSTP1 proteins due to an obese phenotype [50]. In the data
reported herein, we observed an increase in ovarian Gstm1 mRNA
and GSTP1 protein expression with progressive obesity. GSTs are
critical for detoxification of a number of xenobiotic compounds [24,
127, 128]. In addition, ovarian GSTP1 [15, 24] and GSTM1 [25]
negatively regulate proapoptotic proteins; thus, their increased level
in obesity may reflect a reduction in apoptosis during obesity. Both
these functions are in agreement with GSTP1 and GSTM1 being im-
plicated in susceptibility toward and poor prognosis from various
forms of gynaecological tumours [125, 129, 130] and development
of anticancer drug resistance [131–135]. Therefore, increased abun-
dance of ovarian GSTM1 and GSTP1 during obesity could be part
of the underlying mechanisms behind obesity-induced reproductive
disorders in obese females.

In order to increase translatability of our findings to this point,
we evaluated the impact of obesity on ovarian chemical biotrans-
formation and challenged the lean and obese mice with PM, an
ovotoxic metabolite of CPA. The single dose was based on an early
study investigating ovotoxicity of PM [49] with our aim being to in-
duce mild levels of follicle loss. Also, we had determined in another
study that this PM dosage reduced ovarian weight in obese but not
lean mice [136]. Additionally, both lean and obese mice had reduced
primordial follicle number and DNA damage in response to PM.
Interestingly, DNA repair was blunted in the obese female ovary
in response to PM-induced DNA damage [136]. We have previ-
ously demonstrated that EPHX1 protein detoxifies PM [137]; when
EPHX1 was inhibited in cultured rat ovaries, greater PM-induced
follicle loss was observed [137], and thus the ovary responded to a
single dose of PM exposure in terms of increased EPHX1. Thus, in
this study, we evaluated whether obesity affected the ovarian EPHX1
response to PM exposure. Interestingly, comparison of the level of

ovarian EPHX1 between obese and lean mice identified increased
basal EPHX1 protein abundance in the obese mice. We had previ-
ously reported this finding in a separate experiment [50], and these
data further underscore that ovaries from obese females have altered
potential for chemical biotransformation. Additionally, we discov-
ered that, despite a higher basal EPHX1 level in ovaries from obese
females, the response to PM exposure was essentially absent; thus,
ovaries from obese females have the potential for reduced detoxifi-
cation of the ovotoxicant PM during chemotherapy regimens that
include CPA, thereby increasing ovarian damage that ensues. In or-
der to further extend our findings, we investigated whether lung
tissue was responsive to PM exposure. We have determined that PM
can spontaneously transform into a volatile ovotoxicant [138], and
a study determined that a portion of administered CPA was expired
from the lungs of treated animals as chloroethylaziridine [139]. We
observed increased abundance of EPHX1 in the lungs of both lean
and obese females and did not observe any notable difference due
to obesity. Thus, these data could indicate that a volatile compound
results from PM exposure in vivo and is an area for further ex-
ploration. Furthermore, the differences in EPHX1 response to PM
between the lung and ovary underscore tissue-specific responses to
chemical exposure.

Taken together, our data demonstrate that progressive obesity
increased mRNA and/or protein of ovarian signaling pathways that
regulate folliculogenesis and ovotoxicant metabolism. These find-
ings are of concern since dysregulated activation of follicles into the
growing pool will eventually result in their depletion, accelerating
entry into ovarian senescence. In addition, altered ovarian capacity
to biotransform chemicals could pose a threat to both folliculogen-
esis and stability of the germ line. It is noteworthy that the “lean”
mice also experience increased body weight with aging; thus, the
obesity-induced effects on ovarian physiology may be changes that
occur with aging, but are happening at a more rapid rate. It would
be of interest to determine if exercise of diet-induced weight loss
could mitigate the obesity-induced ovarian effects and this is an area
of interest for this group. We further demonstrated that the obese
ovary has a compromised response in terms of EPHX1 induction
in response to PM exposure which could translate into a worsened
outcome for obese patients during anticancer therapies involving
CPA.
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