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Abstract

Endotoxemia can be caused by obesity, environmental chemical exposure, abiotic stressors and bacterial infection. Circumstances 
that deleteriously impact intestinal barrier integrity can induce endotoxemia, and controlled experiments have identified negative 
impacts of lipopolysaccharide (LPS; an endotoxin mimetic) on folliculogenesis, puberty onset, estrus behavior, ovulation, meiotic 
competence, luteal function and ovarian steroidogenesis. In addition, neonatal LPS exposures have transgenerational female 
reproductive impacts, raising concern about early life contacts to this endogenous reproductive toxicant. Aims of this review are to 
identify physiological stressors causing endotoxemia, to highlight potential mechanism(s) by which LPS compromises female 
reproduction and identify knowledge gaps regarding how acute and/or metabolic endotoxemia influence(s) female reproduction.
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Introduction

Gram-negative bacteria protect themselves using 
two phospholipid membranes. The outermost facing 
membrane contains glucosamine-based phospholipid 
known as lipopolysaccharide (LPS), which is a 
recognized endotoxin, meaning it has toxic effects to 
the host after being shed from lysed bacteria (Raetz 
1990, Rietschel et  al. 1994). Endotoxin elicits a well-
characterized robust immune response in animals, but 
there is recent appreciation for its marked alteration 
of host metabolism (independent of overt immune 
modulation) in multiple laboratory models and humans.

LPS consists of a core oligosaccharide, O-antigens 
and a lipid A moiety (depicted in Fig.  1). The lipid A 
moiety portion of LPS is responsible for inducing the 
cellular response (Loppnow et  al. 1989). Systemic 
endotoxemia (increased circulating LPS) reflects either 
bacterial infection or compromised epithelial (skin, 
lung, gastrointestinal tract, uterine and mammary) 
barrier function. Metabolic endotoxemia is described as 
the physiological state when circulating LPS is 10–50 
times lower than that observed during septic shock 
(Cani et al. 2007).

Unsurprisingly, endotoxemia is a consequence 
of infection by LPS-producing bacteria. There are 
also a myriad of environmental exposures that can 
cause endotoxemia and these include non-steroidal 
anti-inflammatory drugs (Arakawa et  al. 2012, Van 
Wijck et  al. 2012), mycotoxins (Alizadeh et  al. 2015, 
Marin et  al. 2015, Assuncao et  al. 2016) and alcohol 
(Hartmann et al. 2012, 2015). Indeed ‘leaky gut’, and 

resultant metabolic endotoxemia, has been associated 
with many pathologies such as inflammatory bowel 
syndrome (Michielan & D’Inca 2015), cirrhosis (Fukui 
2015, Lutz et al. 2015) and cancer (Saggioro 2014). In 
addition, evidence that gut barrier function becomes 
compromised during obesity, resulting in metabolic 
endotoxemia, is firmly established (Amar et  al. 2008, 
Al-Attas et al. 2009, Hawkesworth et al. 2013). Although 
the etiology is not clear, low-grade, chronic inflammation 
caused by obesity-induced endotoxemia is thought to 
play a key role in the development of obesity-related 
disorders (Cani et al. 2007, Hawkesworth et al. 2013) 
including female reproductive dysfunction.

Heat stress is an abiotic stress that also induces 
endotoxemia. In an attempt to maximize radiant heat 
dissipation, heat-stressed animals redistribute blood to 
the periphery, and in order to maintain blood pressure, 
blood flow to the splanchnic tissues, including the 
gastrointestinal tract, is markedly reduced. The intestinal 
epithelial cells are extremely sensitive to oxygen and 
nutrient restriction (Rollwagen et al. 2006). Heat stress 
thus causes marked hypoxic-induced conformational 
changes, which ultimately reduces intestinal barrier 
integrity. Depending upon the severity and magnitude, 
heat stress can cause intestinally derived endotoxemia 
(Pearce et  al. 2012, 2013a,b,c, Sanz Fernandez et  al. 
2014). The duration of leaky gut is variable and transitory, 
for example, intestinal integrity is reduced as early as 
two hours after the onset of heat stress in pigs (Pearce 
et al. 2014) and with removal of heat stress, intestinal 
integrity returned within days. Additionally, leaky gut 
can be caused by reduced nutrient intake, and this 
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has been demonstrated in multiple models (Rodriguez 
et al. 1996, Kvidera et al. 2017). Further, psychological 
and emotional stress also increases gastrointestinal 
tract barrier permeability (Vanuytsel et al. 2014). Thus, 
endotoxemia is relatively common and arises due to 
a variety of frequent initiators, but the severity of it 
depends on the source (epithelial barrier endotoxin 
infiltration vs bacterial infection) and duration of the 
inducing agent(s).

The major purpose of this review is to collectively 
describe experiments that have either directly tested the 
female reproductive effects of endotoxemia through in 
vitro culture models or in vivo experiments in which 
animals are administered LPS. Additionally, we will 
highlight research that has identified associations 
between physiological scenarios that compromise 
intestinal integrity (and concomitantly increase 
circulating endotoxin) with detrimental impacts on 
female reproduction. Studies evaluating the impact of 
metabolic and acute endotoxemia are included. Typically, 
controlled experiments to evaluate endotoxemia’s 
impact on female reproduction have utilized the acute 
approach (i.e. an I.V. or I.M. LPS bolus). Further, we will 
describe how specific cells recognize and respond to 
LPS, characterize the systemic response to endotoxemia 
and the reproductive outcomes of LPS exposure, which 
have been examined in both traditional rodent and large 
animal models.

The systemic response to endotoxemia

Lipopolysaccharide-binding protein

Hepatic acute phase proteins (APP), which are produced 
as a secondary (non-local) response to a toxic stimuli, 
have been widely utilized as indicators of systemic 
and metabolic inflammation, including metabolic 
endotoxemia (Ceciliani et al. 2012). Lipopolysaccharide-
binding protein (LBP) is an APP, primarily produced in 
hepatocytes (Grube et al. 1994, Kirschning et al. 1997), 
that interacts directly with the lipid A moiety of LPS 
(Tobias et al. 1986, 1989, Schumann 2011). Interaction 

between LBP and LPS results in an LBP conformational 
change promoting recognition and transfer of LPS to 
macrophages (Wright et  al. 1989). Interleukin (IL)-6 
(Grube et  al. 1994, Kirschning et  al. 1997), IL-1β and 
dexamethasone (Schumann et al. 1996) stimulate hepatic 
LBP production but LBP can also be produced in lung 
epithelial cells (Klein et al. 1998, Dentener et al. 2000), 
gastrointestinal tract cells (Vreugdenhil et  al. 1999), 
kidney (Wang et  al. 1998) and the epididymis (Malm 
et al. 2005). LBP acts as a soluble receptor and transports 
LPS to the appropriate toll-like receptor (TLR) to initiate 
intracellular signal cascades to elicit an immunological 
response (Schumann 2011). In humans, circulating LBP 
and plasma C-reactive protein (another broad biomarker 
of inflammation) are positively correlated (Tremellen 
et al. 2015), thus providing rationale for using LBP as an 
inflammatory biomarker (Opal et al. 1999).

The cellular response to endotoxemia

The lipid A moiety of LPS is highly conserved among 
species, and it stimulates an inflammatory response 
because it is recognized by membrane-bound TLR4 
(Tobias et al. 1989, Raetz & Whitfield 2008, Schumann 
2011). Utilizing TLR4-deficient mice, it has been 
shown that TLR4 is required for LPS recognition and 
the subsequent cellular response (Hoshino et al. 1999). 
However, other TLRs can also mediate a cellular 
response to LPS, dependent on the bacterial strain of 
origin. As an example, the LPS produced by Leptospirosis 
can instigate an intracellular response via TLR2, TLR4 or 
TLR5 (Goris et al. 2011, Faisal et al. 2016). In addition, 
host species can also differ in their response to LPS 
with some having variable sensitivity to a specific LPS, 
which impacts both the physiological response and 
development of mitigation strategies such as vaccine 
production (Werling et al. 2009).

Toll-like receptor 4

TLR4 is a membrane spanning protein bearing similarity 
to the interleukin 1 (IL1) receptor (Greenfeder et  al. 

Figure 1 Structure of lipopolysaccharide (LPS). 
LPS is found on the cell wall of gram-negative 
bacteria, such as Escherichia coli. The lipid A 
region, depicted in red, elicits the immune 
response.
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1995, Aderem & Ulevitch 2000, Medzhitov & Janeway 
2000). LPS binds to cluster of differentiation 14 (CD14) 
and is then transferred to a complex between TLR4 
and myeloid differentiation factor 2 (MD-2) to initiate 
a cellular response (da Silva Correia et  al. 2001, 
Triantafilou & Triantafilou 2002). The MD-2 protein is a 
crucial component of LPS recognition as an extracellular 
piece of the TLR4 complex (Shimazu et al. 1999). Soluble 
CD14 (sCD14) is integral for serum- and cell-mediated 
responses to LPS (Wright et al. 1989, 1990, Pugin et al. 
1993) while the membrane-bound from (mCD14) is a 
glycosylphosphatidyl-inositol anchored protein (Haziot 
et al. 1988, Simmons et al. 1989) and works with TLR4 
to transmit the LPS signal across the lipid bilayer to 
initiate a cellular response (Poltorak et  al. 1998). LBP 
was originally thought to be necessary for CD14 to bind 
LPS (Wright et al. 1992), however, other studies suggest 
LPS directly activates CD14 or the MD-2-TLR4 complex 
(Dentener et  al. 2000, da Silva Correia et  al. 2001, 
Triantafilou & Triantafilou 2002), and LBP increases the 
rate of LPS binding to CD14 (Hailman et al. 1994).

Following LPS recognition, TLR4 recruits proteins 
including TIR domain-containing adaptor protein 
(TIRAP), myeloid differentiation primary response 
gene 88 (MyD88), TIR domain-containing adaptor-
inducing interferon beta (TRIF) and TRIF-related adaptor 
molecule (TRAM) via its Toll-interleukin-1 receptor (TIR) 
domain causing downstream pathway activation. TIRAP 
and MyD88 mediate MyD88-dependent signaling, 
whereas TRIF and TRAM mediate MyD88-independent 
signaling. Both pathways involve phosphorylation of 
the REL-associated protein (RELA) subunit of nuclear 
factor kappa B (NFκB) although the MyD88-dependent 
pathway activates pro-inflammatory cytokine genes 
while the MyD88-independent signaling activates type 
I interferon genes (Kawai et  al. 1999, Shimazu et  al. 
1999). Phosphorylated RELA increases concomitant with 
increased LPS exposure demonstrating the ability of LPS 
to drive TLR4-mediated NFKB activation (Chow et  al. 
1999). Interestingly, single-nucleotide polymorphisms 
(SNPs) in the TLR4 gene affects immune function and 
reproductive ability in dairy cows (Shimizu et  al. 
2017), though the importance of Tlr4 SNPs in humans 
remains vague (Gowin et al. 2017, Hajjar et al. 2017) 
and is an area of future interest regarding the biological 
response(s) to endotoxemia.

Detoxification of LPS by acyloxyacyl hydrolase

Acyloxyacyl hydrolase (AOAH) is a lipase that deacylates 
and detoxifies LPS within cells and (Hall & Munford 
1983). AOAH releases secondary acyl chains from LPS 
regardless of the acyl chain structure or location on 
the diglucosamine backbone of LPS (Erwin & Munford 
1990). AOAH is primarily produced in macrophages, 
neutrophils and dendritic cells (Ojogun et  al. 2009) 
and converts hexaacylated LPS to pentaacylated or 

tetraacylated LPS rendering it unable to stimulate a 
response through TLR4 complex formation (Teghanemt 
et al. 2005). AOAH activity increased in murine serum 
and hepatocytes following a 25 μg bolus of LPS (Ojogun 
et al. 2009). In these mice, AOAH activity peaked after 
three days and returned to normal levels by day nine 
post LPS injection (Ojogun et al. 2009). Deacylated LPS 
(dLPS) can compete with LPS for LBP or CD14 binding 
(Kitchens & Munford 1995a,b); however, binding of 
dLPS does not stimulate a cellular response (Kitchens 
et al. 1992). Interestingly, LBP alone or in coordination 
with CD14 increases the susceptibility of LPS to AOAH 
detoxification (Gioannini et  al. 2007). Aoah-deficient 
mice have increased pulmonary damage in response 
to intranasal LPS exposure corroborating AOAH’s 
protective role against LPS (Zou et al. 2017). Thus, the 
chemical modification of LPS by AOAH partly regulates 
the immune response by decreasing the capacity of 
LPS to stimulate an intracellular signal cascade (Lu 
et al. 2005).

AOAH cannot act on LPS when the fatty acyl chains are 
orientated to the inside of LPS aggregates or when LPS is 
anchored on the outer membrane of bacteria (Gioannini 
et al. 2007). AOAH can act on LPS-LBP complexes as 
well as monomeric LPS-sCD14 complexes, suggesting 
a model where LBP and sCD14 transfer of LPS exposes 
fatty acyl chains to AOAH (Gioannini et  al. 2007). 
However, when LPS is transferred and bound to MD-2, 
the fatty acyl chains are less accessible, decreasing 
AOAH’s ability to deacylate LPS and reduce TLR4 
activation (Gioannini et al. 2007). Whether the female 
reproductive tract has the capacity to locally detoxify 
LPS remains unknown though recently, the importance 
of AOAH in the lung (Zou et  al. 2017), urinary tract 
(Yang et al. 2017) and colonic dendritic (Janelsins et al. 
2014) cells has been demonstrated.

Effects of LPS on female reproduction and fertility

Understanding the effects of LPS exposure on ovarian 
function is of interest in humans and production 
livestock species, since increased circulating LPS is 
associated with heat stress (Pearce et al. 2012, 2013a,b, 
2014, Sanz Fernandez et al. 2014), obesity (Cani et al. 
2007) and bacterial infection. Uterine infections have 
been associated with various negative impacts on 
bovine fertility, including cystic ovaries (Bosu & Peter 
1987, Peter et  al. 1989a,b), abnormal or delayed 
folliculogenesis after parturition (Huszenicza et  al. 
1999), a longer postpartum anestrus period (Bosu & 
Peter 1987) and a lengthened luteal phase (Peter & 
Bosu 1988). Interestingly, follicular fluid that surrounds 
and nourishes the maturing oocyte contains LPS levels 
reflective of the systemic circulation (Herath et al. 2007). 
An accumulation of IL6 and IL8 in media collected after 
bovine granulosa cell or ovarian cortical strip culture 
was observed following LPS incubation, similar to the 
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responsiveness of human immune cells (Dentener et al. 
1993, Bromfield & Sheldon 2013). Plasma LBP and 
follicular fluid IL6 concentrations were also positively 
correlated, suggesting that systemic endotoxemia is 
associated with ovarian inflammation (Tremellen et al. 
2015). Thus, LPS can locate the ovary and potentially 
interact directly with the oocyte, though it remains to 
be determined.

Impacts of endotoxemia on folliculogenesis

Bovine ovarian cortical explants exposed to LPS 
had reduced number of primordial follicles due to 
hyperactivation (Bromfield & Sheldon 2013). Similarly, 
mice exposed to LPS in vivo had reduced primordial 
follicle number, which was described as TLR4 mediated, 
since Tlr4−/− mice are refractory to LPS-mediated 
primordial follicle depletion (Bromfield & Sheldon 
2013) suggesting TLR4 in part regulates the ovarian 
LPS response. Phosphatase and tensin homolog (PTEN) 
and Forkhead box O3 (FOXO3), both proteins involved 
in regulating primordial follicle activation, were 
translocated out of the oocyte nucleus of primordial 
and primary follicles in cultured bovine cortical strips 
after LPS exposure (Bromfield & Sheldon 2013). The 
aforementioned indicate premature primordial follicle 
activation, potentially leading to depletion of the ovarian 
follicular reserve. In rodent studies, altered protein 
abundance due to LPS exposure in neonatal rodents has 
been observed (Sominsky et  al. 2013). Furthermore, a 
diminished follicular reserve and earlier onset of ovarian 
senescence occurs in female rats neonatally exposed to 
LPS, raising concern about reproductive outcomes of 
bacterial infections early in life (Sominsky et al. 2012).

Effects on the follicular stage of the estrous cycle, 
including ovulation

Immune challenges can disrupt the follicular phase in 
multiple species (Kalra et  al. 1990, Peter et  al. 1990, 
Battaglia et al. 2000). LPS suppresses the hypothalamic-
pituitary-gonadal axis by decreasing pulsatile 
gonadotrophin-releasing hormone (GnRH) secretion 
(Hoshino et al. 1999). LPS also blunts the 17β-estradiol 
(E2) increase during the preovulatory phase, thus 
delaying subsequent luteinizing hormone (LH) and 
follicle-stimulating hormone (FSH) surges, culminating 
in delayed or inhibited ovulation (Peter et  al. 1989a, 
1990, Battaglia et al. 2000, Suzuki et al. 2001). Using 
gonadectomized animals, it has been demonstrated 
that LPS suppresses GnRH release, thus disrupting the 
LH surge amplitude, frequency and concentration (Feng 
et al. 1991, Ebisui et al. 1992, Coleman et al. 1993, Kujjo 
et al. 1995). In agreement with reduced E2 compromising 
ovulation, when LPS was infused into the uterine lumen, 
the preovulatory LH surge was attenuated (Peter et al. 
1989a). Furthermore, LPS-treated females had delays in 

the time to the LH surge (Fergani et al. 2012) and lower 
ovulation rates (Williams et  al. 2008). Recently, ovine 
kisspeptin/neurokinin B/dynorphin (KNDy) neuron 
activation has been demonstrated to be disrupted by 
LPS exposure, thus altering the hypothalamic-pituitary-
ovarian axis (Fergani et al. 2017).

LPS alters anterior pituitary hormones in circulation, 
through direct or indirect mechanisms. LPS infusion 
decreased LH but stimulated systemic prolactin (PRL) 
and cortisol levels in anestrous ewes and reduced 
mRNA abundance of LH (LHβ) and luteinizing 
hormone/choriogonadotropin receptor (LHCGR) 
(Herman et  al. 2010). Further, mRNA-encoding FSH 
and the FSH receptor (FSHR), PRL and the PRL receptor 
were increased by LPS infusion (Herman et  al. 2010). 
Granulosa cells exposed to high levels of LPS had 
reduced mRNA expression of LHCGR, FSHR and 
cytochrome P450 (CYP) 19A1 (CYP19A1) (Magata et al. 
2014a). Theca cells isolated from follicles exposed to 
high levels of LPS also had decreased mRNA abundance 
of LHCGR, CYP17 and CYP11A1, but no difference 
in steroidogenic acute regulatory protein (STAR) or 
3β-hydroxysteroid dehydrogenase (HSD3B1) levels 
compared to theca cells from follicles exposed to low 
levels of LPS (Magata et  al. 2014b). LPS exposure did 
not impact cell number or androstenedione production 
from cultured theca cells from small, medium or large 
ovarian follicles, but it did reduce E2 production from 
cultured granulosa cells isolated from all three follicular 
sizes (Williams et al. 2008). In addition, bovine follicles 
with high levels of LPS (>0.5 EU/mL) had lower E2 but 
elevated progesterone (P4) levels, relative to follicles with 
lower LPS concentrations (Magata et al. 2014a). In an in 
vitro system where bovine granulosa cells were cultured 
with LPS and provided with FSH and androstenedione, 
E2 and P4 conversion were reduced potentially due to 
decreased expression of Cyp19a mRNA and protein 
(Herath et  al. 2007). During the in vivo LH surge, a 
threshold of E2 is needed to induce behavioral display 
of estrus; however, the amount of E2 actually required 
for the behavioral estrus is thought to be at lower level 
than that required to induce ovulation (Saifullizam et al. 
2010) and LPS negatively impacts female estrus behavior 
and frequency (Battaglia et al. 2000).

Post-ovulation impacts of LPS have also been 
demonstrated. Bovine oocytes subjected to in vitro 
maturation with LPS were less likely to successfully 
complete meiosis with intact meiotic structures 
(Bromfield & Sheldon 2011). In addition, increased 
levels of reactive oxygen species and apoptotic genes 
and altered methylation patterns were observed in 
bovine oocytes as a result of LPS (Zhao et  al. 2017). 
Further, LPS negatively affected bovine oocyte nuclear 
maturation by compromising meiotic progression, 
mitochondrial membrane potential and mitochondrial 
cytoplasmic redistribution (Magata & Shimizu 2017). 
LPS also reduced blastocyst development of LPS-
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exposed oocytes and the trophoblast cell number of 
blastocysts (Magata & Shimizu 2017). These studies 
support the potential for LPS to negatively impact oocyte 
developmental competence.

Impact of LPS on luteal phase of the estrous cycle

Endotoxemia can compromise P4 production and 
lead to decreased luteal function. Corpus luteum (CL) 
formation and the expected increase in P4 were delayed 
in heifers exposed to LPS (Suzuki et al. 2001). During 
a normal estrous cycle, in the absence of fertilization 
and pregnancy, prostaglandin F2α (PGF2α) causes CL 
regression and LPS can cause CL regression by inducing 
PGF2α production (Moore et  al. 1991, Hockett et  al. 
2000). Not only does LPS administration delay ovulation, 
it also lengthens the time to luteinization, CL formation 
and sufficient P4 production (Suzuki et al. 2001, Lavon 
et al. 2011); thus, LPS has numerous targets within the 
luteal phase. Additionally, CL size is reduced by LPS 
perhaps due to activation of pro-apoptotic pathways 
(Herzog et al. 2012). The cannabinoid receptor type 1 
(eCS) has recently been discovered to be involved in LPS-
induced CL regression in mice as wild-type mice had 
increased uterine prostaglandin-endoperoxide synthase 
(PTGS2) and PGF2α expression, which resulted in 
reduced ovarian P4 receptor abundance and regression 
of the CL, and these observations were absent in eCS-
deficient mice (Schander et al. 2016).

Administrating LPS to goats during their luteal phase 
did not affect steroid hormone concentrations but did 
increase PGF2α metabolites (Fredriksson & Edqvist 
1985), and repeated uterine LPS infusions in dairy cows 
every 6 h from 12 h prior to ovulation until 9 day post-
ovulation resulted in CL regression much sooner than 
controls (Luttgenau et al. 2016). Culturing bovine luteal 
tissue in vitro with TNFα increased PGF2α in a dose-
dependent manner (Benyo & Pate 1992). Additionally, 
porcine luteal tissue, when cultured in vitro with PGF2α, 
exhibits a feedback mechanism in which more PGF2α is 
produced (Guthrie et al. 1979). Normally, the porcine 
CL acquires capacity to undergo luteolysis around day 
13 of the luteal phase (Guthrie et al. 1979), but multiple 
administrations of PGF2α can induce luteolysis in the 
porcine CL at an earlier time (Diaz et al. 2000) suggesting 
LPS may accelerate luteolysis via TNFα and PGF2α 
induction in pigs, though this remains to be confirmed.

A temporal pattern of LPS affecting circulating P4 has 
been demonstrated, whereby P4 is initially increased 
and then declines in LPS-treated, relative to control 
females (Herzog et  al. 2012). LPS exposure initially 
decreased but then did not affect P4 production in 
bovine granulosa cells in culture (Herath et  al. 2007). 
Further, P4 concentrations were increased in large 
bovine follicles, and it has been proposed that less P4 is 
being converted to E2 (Magata et al. 2014a,b). However, 
others demonstrated that LPS in vitro can inhibit steroid 

secretion, specifically P4 and androstenedione in thecal-
interstitial cells (Taylor & Terranova 1995) suggesting 
endotoxemia could alter P4 production, representing an 
endocrine-disrupting effect.

Endotoxemia and pregnancy maintenance

P4 is essential for pregnancy maintenance, and LPS 
reduces the P4 receptor in uteri of pregnant mice 
(Agrawal et  al. 2013). The effect of LPS on the ability 
of P4 to sustain gestation could cause spontaneous 
abortion, a phenotypic event frequently associated 
with physiological conditions in which LPS is elevated. 
Infection from gram-negative bacteria or their outer 
wall components (including LPS) triggers preterm 
labor in many species (Koga & Mor 2010) and in 
fact, intraperitoneal LPS injection is an established 
experimental model for inducing preterm labor (Deb et al. 
2004, Elovitz & Mrinalini 2004, Agrawal et al. 2013). In 
addition, infertility can be the result of reproductive tract 
infections in humans and production animals (Williams 
et al. 2008, Price et al. 2013). As mentioned earlier, LPS 
increases PGF2α release (Roberts et al. 1975) leading to 
CL regression, a decline in P4 and spontaneous abortion 
in goats (Fredriksson & Edqvist 1985). LPS and bacterial 
infection also increase PGF2α in the mare (Fredriksson 
et  al. 1986) and the cow (Fredriksson et  al. 1985). 
Uterine epithelial and stromal cells express TLR4 and 
both produced PGF2α and prostaglandin E2 (PGE) after 
LPS exposure, a response abrogated by using a TLR4 
antagonist in bovine endometrial explants (Herath et al. 
2006). Endometrial epithelial and stromal cells can 
respond to LPS exposure via the TLR4- and MYD88-
dependent pathways (Cronin et  al. 2012) and cows 
experiencing endometritis had increased endometrial 
expression of TLR4 and pro-inflammatory mediators in 
the first week post-partum (Herath et  al. 2009). TLR4 
also mediates the local immune response in human 
(Hirata et  al. 2005, Rashidi et  al. 2015), feline (Jursza 
et al. 2015) and canine (Silva et al. 2012) endometrial 
cells. Recent evidence supports that metabolic stress, 
such as negative energy balance in lactating dairy cows, 
may alter the endometrial response to LPS (Sheldon et al. 
2017), a concern for animals experiencing the transition 
from gestation to lactation or for animals (and humans) 
who have metabolic perturbations.

Bovine embryos exposed in vitro to both LPS and 
PGF2α had reduced survival indicating the potential 
for LPS to alter pregnancy success (Soto et  al. 2003). 
Human trophoblast cells cultured with LPS increase pro-
inflammatory macrophage production (Li et  al. 2016) 
and as mentioned earlier, there are fewer trophoblast 
cells in blastocysts that develop from LPS-exposed 
oocytes (Magata & Shimizu 2017). Additionally, human 
decidual cells exposed to LPS produced TNFα and 
PGF2α, which negatively affected cell growth. Further, 
when human amniotic fluid from normal relative to 
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preterm labor pregnancies were compared, there were 
increased amounts of TNFα in the preterm samples, and 
LPS was detectable in 50% of preterm labor amniotic 
fluids (Casey et al. 1989). Furthermore, as evidence that 
LPS can alter the maternal capacity to support pregnancy, 
LPS-induced changes to human and bovine endometrial 
epithelial cell protein abundance (which could affect 
implantation at the critical time of maternal recognition 
of pregnancy) has been demonstrated (Cronin et  al. 
2012, Jensen & Collins 2012, Piras et al. 2017).

Additional considerations

Measuring circulating LPS should be interpreted with 
caution, since the limulus amebocyte lysate assay 
measures endotoxin biological activity and not LPS that 
is bound to inflammatory mediators such as soluble 
CD14 or LBP (Guerville & Boudry 2016). Additionally, 
the bacterial source of LPS remains undefined in these 
assays, and there are interactions that can alter the assay 
interpretation (Guerville & Boudry 2016). Thus, the 
usefulness of measuring LPS directly has been questioned 
(Stadlbauer et al. 2007, Gnauck et al. 2015, 2016). Also, 
most assays do not distinguish between LBP bound 
to LPS or that which is unbound; thus, LBP data must 
also be appropriately interpreted and within context. 
Taken together, a lack of an effective and convenient 
LPS assay is limiting the immune-reproduction field 
and a collective approach in defining the physiological 
endotoxemia response is required.

Of additional interest and concern is that LPS 
causes hyperinsulinemia, either directly as an insulin 
secretagogue or indirectly by increasing glucose 
stimulated insulin secretion (Baumgard et  al. 2016). 
Reasons why a catabolic signal like LPS increases an 
acutely anabolic hormone like insulin are not clear, but 
reports suggest that insulin has potent anti-inflammatory 
effects (Chalmeh et  al. 2013) and that immune cells 
are insulin sensitive (Maratou et al. 2007). Whether the 
ovary responds to hyperinsulinemia is unclear (Akamine 
et al. 2010, Brothers et al. 2010, Wu et al. 2012, Nteeba 
et  al. 2013); however, elevated insulin levels have 
been reported in both serum and follicular fluids of 
obese females (Robker et al. 2009, Valckx et al. 2012). 
Primordial follicle hyperactivation (similar to that caused 
by LPS exposure) has been documented in neonatal 
rat ovaries due to insulin administration (Kezele et  al. 
2002). The negative effects of hyperinsulinemia and 
insulin resistance on female reproduction have been 
well documented, largely as pertaining to obesity and 
polycystic ovary syndrome (Goodarzi et al. 2011, Ogden 
2015) and while not described herein in the interest 
of brevity, hyperinsulinemia could be a secondary 
consequence of endotoxemia with the potential to 
negatively influence female reproduction, though 
studies to specifically investigate this have not yet been 

performed. Hyperinsulinemia is not the sole secondary 
metabolic alteration observed due to endotoxemia: 
reduced circulating high-density lipoprotein (HDL) 
cholesterol was observed in dairy cows subjected to 
an acute exposure to LPS (De Campos et  al. 2017 ) 
and, as discussed herein, LPS induces an inflammatory 
response and inflammatory mediators could also impact 
reproduction as an indirect secondary consequence of 
elevated LPS.

Conclusion

In summary, endotoxemia negatively affects female 
fertility and fecundity and has many points of action 
within the reproductive tract. Endotoxemia originates 
from a variety of stressors and also during times 
of bacterial infection. Several studies investigating 
reproductive impacts of endotoxemia have used acute, 
bolus exposures, as summarized in Table 1, which may 
not accurately represent the temporal pattern of bacterial 
infection, or ‘leaky gut’, thus, more continuous chronic 
low-level LPS experiments are warranted in order to 
identify mitigation strategies to protect and/or improve 
mammalian female reproductive function. In vitro 
experiments also are largely reflective of acute exposures 
since these levels are likely to be much higher than 
those that occur in vivo or those LPS concentrations that 
reach the follicular fluid and/or the oocyte. Additionally, 
endotoxemia that results from compromised intestinal 
integrity is accompanied by systemic exposure to 
additional intestinal components, many of which have 
not been characterized and identified and which may 
also be dynamic in response to the initiating stressor. Thus 
greater understanding of resident microbial populations 
and shifts to these populations will ultimately improve 
our understanding of the gut-hypothalamic-pituitary-
ovarian-uterine axis.

Numerous questions remain to be clarified in our 
understanding of the impacts of endotoxemia on female 
fertility include but are certainly not limited to: (1) the 
level and/or duration required to impact fertility; the 
initiating insult to the reproductive tract, (2) the immune 
response within the reproductive tract that responds to 
endotoxemia, (3) the potential for tolerance to elevated 
LPS to develop, (4) the actual impact of LPS on the 
quality of the germ line, (5) potential effects on offspring 
(trans- and multi-generational) exposed to endotoxemia 
in utero and (6) the contribution or lack thereof of LBP 
on data derived from in vitro experiments. In addition, 
it is difficult to surmise the duration of metabolic 
endotoxemia, which is likely to vary dependent on 
the physiological situation, but which ultimately has 
a potential to impact physiological outcomes. Each of 
these areas are worthy of investigation with relevance 
to many facets of public health and production 
animal agriculture.
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Table 1  Summary of LPS studies with effects on reproductive outcomes.

Species Route Duration Dose Citation Findings

Ewes IA Single injection 0.1–10 mg Newnham et al. (2005) Fetal death
Single injection 400 ng/kg Battaglia et al. (1997) Ovariectomized, increased P4, 

decreased LH
IV 26 h 300 ng/kg Battaglia et al. (2000) Decreased E2 and LH

2× (2 week interval) 40 ng/kg Herman et al. (2010) Decreased LH, increased prolactin, 
no effect on FSH

Rats S.C. Daily injections for 2 
or 6 day

2 mg/kg or 20 μg/kg Shakil et al. (1994) Decreased P4 and E2, fewer large 
preovulatory follicles

Rhesus monkey IV 2× daily for 5 day 150 μg Xiao et al. (1999) Decreased P4
Trout IP Single injection 3 mg/kg MacKenzie et al. (2006) Induced apoptosis, no effects on 

germinal vesicle break down
Gilts PC Single injection 0.5, 1, 2, 3 μg/kg Cort (1986) Abortions

Single injection 0.5, 1, 2, 3 μg/kg Cort et al. (1986) No change in cycle length. 
decreased P4, increased PGF2α

Single injection 50, 250, or 1250 μg Tuo et al. (1999) No effect on P4 plasma, fetal 
survival or development, 
increased fetal weight and 
amniotic fluid volume

IU Single injection 36 mg Wrathall et al. (1978) Abortions
Mixed 

into 
ration

Single injection 40 mg Cort et al. (1990) Increased PGF2α, no change in P4

Goats IU Injected 1 or 2× 0.1–5.2 μg/kg Fredriksson et al. (1985) No hormonal changes, increased 
PGF2α, decreased P4, abortions

Heifers IU Every 6 h for 10 trts 5 μg/kg Peter et al. (1990) Decreased E2 production, inhibited 
LH surge, no change in P4

Every 6 h for 10 trts 5 μg/kg Peter et al. (1989a) Inhibited LH surge and ovulation, 
caused ovarian cysts

Every 6 h for 9 day 3 μg/kg Lüttgenau et al. (2016) Premature CL luteolysis, increased 
PGF2α metabolites, decreased P4, 
reduced luteal size and blood 
flow

IU or IV Single injection 5 μg/kg Gilbert et al. (1990) Increased P4, PGF metabolites, 
cycle length was unchanged

IV Single injection 0.01 μg/kg Kujjo et al. (1995) Ovariectomized, increased P4, 
decreased E2 and LH

Lactating cows IU 2× @ 5 and 20 DIM 5 μg/kg Peter et al. (1990) Increased PGF2α metabolites
IV or IM Single injection IV: 0.5 μg/kg or IM: 

10 μg
Lavon et al. (2008) No change in E2 yet delayed or 

inhibited ovulation
IM Single injection 200 μg Lüttgenau et al. (2016) No change in P4, luteal size or 

luteal blood flow
IM Single injection 10 μg Lavon et al. (2011) Decreased follicular E2, P4

Non-lactating cows IV Single injection 0.5 μg/kg Herzog et al. (2012) Decreased luteal size and luteal 
blood flow, increased P4 and PGE

IV 6 h 1.0 or 2.5 μg/kg Giri et al. (1990) Abortions, increased PGF2α, 
decreased P4

Mice IP Single injection 10 μg Buhimschi et al. (2003) Preterm birth, stillborns
IP Single injection 50 μg/mouse Fidel et al. (1994) Preterm birth
IP Single injection 0.5 μg/g BW Ogando et al. (2003) Resorptions
IP Single injection 100 μg/mouse Bromfield and Sheldon 

(2013)
Decreased primordial follicle pool, 

increased follicle atresia
IP Single injection 1.0 μg/g Aisemberg et al. (2013) Resorptions, decreased P4
IP Single injection 0.4–2 mg/kg Salminen et al. (2008) Preterm birth, stillborns
IP Single injection 2.4 mg/kg Rounioja et al. (2005) Fetal defects
Ip Single or multiple 

injections at 1–6 h 
intervals, 12–17 day

0–100 mg Kaga et al. (1996) Preterm birth

IP 2× 10 μg/kg then 
120 μg/kg

Xu et al. (2007) Pre-treatment of LPS saved 
embryonic resorption

IV Single injection 10 μg Harper and Skarnes (1972) Abortions
IV Single injection 7.5 × 106 E.coli Coid et al. (1978) Resorptions
IV Single injection 1.5–20 μg Skarnes and Harper (1972) Abortions
IV Single injection 2–5 μg Rioux-Darrieulat et al. (1978) Abortions

(Continued)
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