
THE NEOCLASSICAL FIRM AND TECHNOLOGY

1. DEFINITION OF A NEOCLASSICAL FIRM

A neoclassical firm is an organization that controls the transformation of inputs
(resources it owns or purchases) into outputs or products (valued products that
it sells) and earns the difference between what it receives in revenue and what it
spends on inputs.

A technology is a description of process by which inputs are converted in out-
puts. There are a myriad of ways to describe a technology, but all of them in one
way or another specify the outputs that are feasible with a given choice of inputs.
Specifically, a production technology is a description of the set of outputs that can
be produced by a given set of factors of production or inputs using a given method
of production or production process.

We assume that neoclassical firms exist to make money. Such firms are called
for-profit firms. We then set up the firm level decision problem as maximizing the
returns from the technologies controlled by the firm taking into account the de-
mand for final consumption products, opportunities for buying and selling prod-
ucts from other firms, and the actions of other firms in the markets in which the
firm participates. In perfectly competitive markets this means the firm will take
prices as given and choose the levels of inputs and outputs that maximize profits.

If the firm controls more than one production technology it takes into account
the interactions between the technologies and the overall profits from the group
of technologies.

The neoclassical definition of the firm treats the firm as synonymous with the
technology. The firm is a engineering construct that specifies how inputs and
outputs are related, assumes a decision rule for choosing the inputs and outputs
subject to the technology and earns any returns that come from this process. In
reality, firms must deal with many complex human challenges, such as creating
incentives, and coping with incomplete information. The neoclassical model of
a firm views labor as an input like any other. However, labor is different, since
the workers must be motivated to work effectively (supply the input purchased).
Supplying effective incentives may be difficult, because the employer cannot have
complete information about the effort a worker is exerting. Such issues will be
ignored for the present.

2. DESCRIPTIONS OF TECHNOLOGY

There are many ways to describe the technology of a firm. In all that follows y
= (y1, y2, ... , ym) ε Rm

+ is a vector of net outputs for the firm while x = (x1, x2, ... ,
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2 THE NEOCLASSICAL FIRM AND TECHNOLOGY

xn) εRn
+ is a vector of net inputs for the firm.

This lecture will concentrate on descriptions based on sets. One of the most
common ways to describe a production technology is with a production set.

The technology set for a given production process is defined as

T = {(x, y) : x ε Rn
+, y ε Rm:

+ x can produce y }

where x is a vector of inputs and y is a vector of outputs. The set consists of
those combinations of x and y such that y can be produced from the given x. For
the case of a single input and single output the production set T is represented by
the area bounded by the x-axis and a in figure 1.

FIGURE 1. Representation of Technology Set
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As an example consider the production technology for producing pancakes on
a weekend camp-out. The input vector might be as follows:

x =




powdered milk water eggs oil flour
baking powder salt bowl whip measuring devices
small griddle camp stove white gas spatula semi − skilled labor

butter maple syrup plate knife fork




Let the output in this case be a single product consisting of buttered pancakes
covered with syrup, ready to eat. The technology set then consists of different
numbers of pancakes along with all the various input combinations that could
produce them. For later reference denote this as technology 1. One element of this
set might be as follows:
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1/3 c powdered milk 15/16c water 1 egg 2T oil 1 c flour

2 t baking powder 1/4 t salt 1 bowl 1 whip 1 measuring set
1 small griddle 1 camp stove 1/4 c white gas 1 spatula 1/4h semi − skilled labor

3T butter 1/2 c maple syrup 1plate 1knife 1 fork




(
10 pancakes

)



Of course, the same inputs with an output of 6 pancakes is also possible since
we can always throw the extras to the wild creatures (assuming we are not par-
ticularly environmentally conscious). Other combinations are also possible. A par-
ticular element of the production set is called a production plan. The production
process for pancakes can, of course, be defined in different ways depending on
which parts we want to consider. If the output is pancakes hot off the griddle,
then the inputs butter, maple syrup, plate, knife and fork can be eliminated. We
also might consider dividing the process up into steps where the first step is the
production of “pancake mix”. In this case the technology for hot off the griddle
pancakes might be







pancake mix water bowl
whip measuring set small griddle

camp stove white gas spatula
semi − skilled labor




(
pancakes

)



where the pancakes are assumed to be off the grill only. This might be denoted
technology 2. We could also consider a more primitive process denoted technology
3 that does not use the manufactured input flour but considers wheat, a grindstone
and grinding labor as additional inputs replacing flour.

The firm may choose to organize the technologies that it controls in a variety of
ways. Consider again the example of the pancakes. The firm may choose to use
technology 1 or technology 2. In the case of technology 2 the firm could produce its
own pancake mix, or it could purchase it on the market. The vertical boundaries
of a firm in a vertical chain define the activities that a firm performs for itself as
opposed to purchasing them from independent firms in the market. Activities
closer to the beginning in a vertical chain are called upstream in the chain while
those closer to the finished goods are called downstream. Thus a firm’s vertical
boundaries deal with how many stages up or downstream from a given process
the firm chooses to control.

3. FACTORS OF PRODUCTION

3.1. Definition of a factor of production. A factor of production (input) is a
product or service that is employed in the production process. The factors of pro-
duction used by a firm fall into two general classes, those that are used up in the
production process and those that simply contribute a service to the process. For
example the flour that goes into pancakes is gone once the pancakes are made and
sold, while the mixing bowl is still available for future use. Thus we categorize
inputs into two categories, expendables and capital.
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3.2. Expendable factors of production. Expendable factors of production are
raw materials, or produced factors that are completely used up or consumed dur-
ing a single production period. Examples might include gasoline, seed, iron ore,
thread and cleaning fluid.

3.3. Capital. Capital is a stock that is not used up during a single production pe-
riod, provides services over time, and retains a unique identity. Examples include
machinery, buildings, equipment, land, stocks of natural resources, production
rights, and human capital.

3.4. Capital services. Capital services are the flow of productive services that can
be obtained from a given capital stock during a production period. They arise
from a specific item of capital rather than from a production process. It is usually
possible to separate the right to use services from ownership of the capital good.
For example, one may hire the services of a backhoe to dig a trench, a laborer (with
embodied human capital) to flip burgers, or land to grow corn.

3.5. Examples. A number of examples will illustrate the argument. Land is con-
sidered a capital asset but the right to use the land for a specific period is an ex-
pendable service flow. A laborer and the embodied human capital is considered
capital, but the service available from that laborer is considered an expendable
capital service. Shares in an water district are considered capital, but the acre feet
available for use in a given period are an expendable input.

4. THE OUTPUT CORRESPONDENCE,OUTPUT SETS,AND EFFICIENT USE OF
INPUTS

4.1. Notation. We will often use the following mathematical symbols.

(1) ∈ means is an element of, as in a ∈ S.
(2) ⊆ is the symbol for subset. B is a subset of A (written B ⊆ A ) iff every

member of B is a member of A.
(3) ⊂ is the symbol for proper subset. If B is a proper subset of A(i.e., a subset

other than the set itself), this is written B ⊂ A .
(4) ∀ means for every
(5) ⇐⇒ means if and only if
(6) ∃ means there exists
(7)

∑n
i=1 xi means the sum of the terms labeled x1,x2, . . . ,xn

(8)
∏n

i=1 xi means the products of the terms labeled x1,x2, . . . ,xn

(9)
⋂n

i=1 xi means the intersection of the terms labeled x1,x2, . . . ,xn

(10)
⋃n

i=1 xi means the union of the terms labeled x1,x2, . . . ,xn

4.2. Definitions. Rather than representing a firm’s technology with the technol-
ogy set T, it is often convenient to define a production correspondence and the
associated output set.

1: The output correspondence P, maps inputs x ε Rn
+ into subsets of outputs,

i.e., P: Rn
+ → 2Rm

+ . A correspondence is different from a function in that a
given domain is mapped into a set as compared to a single real variable
(or number) as in a function.
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2: The output set for a given technology, P(x), is the set of all output vectors
y ε Rm

+ that are obtainable from the input vector x ε Rn
+. P(x) is then the

set of all output vectors y ε Rm
+ that are obtainable from the input vector

x ε Rn
+. We often write P(x) for both the set based on a particular value of

x, and the rule (correspondence) that assigns a set to each vector x.

4.3. Relationship between P(x) and T(x,y).

P (x) = (y : (x, y ) ε T )

In the case of two outputs the output set is a region of the plane, the set of
all combinations of y1 and y2 that can be produced with given levels of the x
variables. Figure 2 shows P(x) for the case of two outputs and a fixed input bundle.

FIGURE 2. P(x) for Two Outputs and a Fixed Input Bundle
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Figure 3 shows P(x) for the case of one input and one output. In this case, P(x) is
a vertical line segment starting at 0 for each x. Production is ”efficient” only along
the curve which lies above all of these line segments. Points below the curve rep-
resent less output with the same level of input.

If there is only one output, then max P(x) is the maximum level of y that can
be produced using a given level of x. The firm figures out how to “optimally” use
the level of resources x and no more output can be obtained by combining them
in another way. Each input is being used in such a way it cannot produce more
output.

4.4. Properties of P(x). The following are a set of axioms proposed for the output
correspondence.
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FIGURE 3. P(x) for One Input and One Output
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4.4.1. P.1 Inaction and No Free Lunch.

a: 0 ε P(x) ∀ x ε Rn
+.

b: y 6∈ P(0), y > 0

4.4.2. P.2 Input Disposability. ∀ x ε Rn
+ , P(x) ⊆ P(θx), θ ≥ 1.

4.4.3. P.2.S Strong Input Disposability. ∀ x, x’ ε Rn
+ , x’ ≥ x ⇒ P(x) ⊆ P(x’)

4.4.4. P.3 Output Disposability. ∀ x ε Rn
+ , y ε P(x) and 0 ≤ λ ≤ 1 ⇒ λy ε P(x)

4.4.5. P.3.S Strong Output Disposability. ∀ x ε Rn
+ , y ε P(x) ⇒ y’ ε P(x), 0 ≤ y’ ≤ y

4.4.6. P.4 Boundedness. P(x) is bounded for all x ε Rn
+

4.4.7. P.5 T is a closed set. P: Rn
+ → 2Rm

+ is a closed correspondence, i.e., if [x` → x0,
y` → y0 and y` ε P(x`), ∀ `] then y0 ε P(x0)

4.4.8. P.6 Attainability. If y ε P(x), y ≥ 0 and x ≥ 0, then ∀ θ ≥ 0, ∃ λθ ≥ 0 such that
θy ε P(λθx)

4.4.9. P.7 P(x) is convex. P(x) is convex for all x ε Rn
+ .

4.4.10. P.8 P is quasi-concave. The correspondence P is quasi-concave on Rn
+ which

means ∀ x, x’ ε Rn
+ , 0 ≤ θ ≤ 1, P(x) ∩ P(x’) ⊆ P(θx + (1-θ)x’)

4.4.11. P.9 Convexity of T. P is concave on Rn
+ which means ∀ x, x’ ε Rn

+ , 0 ≤ θ ≤ 1,
θP(x)+(1-θ)P(x’) ⊆ P(θx + (1-θ)x’)

4.5. Discussion of properties of P(x).
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4.5.1. P.1 Inaction and No Free Lunch.
a: 0 ε P(x) ∀ x ε Rn

+.

This implies that it is possible to produce a zero level of output, no
matter what the input level.

b: y 6∈ P(0), y > 0

If there are no inputs, there can be no output. Parts a and b together
imply that P(0) = 0.

4.5.2. P.2 Input Disposability. ∀ x ε Rn
+ , P(x) ⊆ P(θx), θ ≥ 1.

If inputs are proportionately increased, outputs do not decrease.

4.5.3. P.2.S Strong Input Disposability. ∀ x, x’ ε Rn
+ , x’ ≥ x ⇒ P(x) ⊆ P(x’)

If some inputs are increased, outputs do not decrease. P.2.S implies P.2.

4.5.4. P.3 Output Disposability. ∀ x ε Rn
+ , y ε P(x) and 0 ≤ λ ≤ 1 ⇒ λy ε P(x)

Weak disposability of outputs implies that a proportional reduction in outputs
is feasible. Suppose the input vector x1 can produce the output vector y1={ y1

1, y1
2

}. Then even if the technology cannot produce λ y1 = { λ y1
1, λ y1

2 } where 0 ≤ λ ≤
1, the firm can always produce y1={ y1

1, y1
2 } and throw the extra levels of y away

in a proportionate fashion.

4.5.5. P.3.S Strong Output Disposability. ∀ x ε Rn
+ , y ε P(x) ⇒ y’ ε P(x), 0 ≤ y’ ≤ y

Any output can be disposed of without affecting inputs. This may not always
be the case. If laws require that pollution output be disposed of properly, the initial
level of inputs may not be be able to produce the same level of a ”good” output
and less of the ”bad” output. Alternatively, two products may be produced in
more or less fixed proportions so that output combinations along the positively
sloped line from 0 to a in figures 4 and 5shows that as y1 is increased there is
also an increase in y2. Figure 4 can be used to differentiate P.3 and P.3.S. The
weakly disposable technology is bounded by (0abc0). The output vector may be
proportionately decreased while holding inputs constant.

Consider the point q (or any other point in P(x) in figure 5 ). The radial contrac-
tion of it will always be in P(x).

If outputs are strongly disposable, the output set P(x) is augmented to (0dabc0).
The output vector may be decreased in only one component while maintaining
the output of the other component. Consider y1 to be a ”bad” output and assume
the firm is producing at point a in figure 4. The firm can throw away (0,a’) of y1

without reducing the output level of y2. In figure 6 the positively sloping sections
of the boundary of P(x) would be eliminated with strong disposability.

In another sense, any point within P(x) can be extended to the axis is the sense
that one of the outputs can be tossed. If one is producing at point q in figure 7, one
can reduce y1 to zero and maintain the level of y2.
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FIGURE 4. Disposability of Output
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FIGURE 5. Radial Disposability
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4.5.6. P.4 Boundedness. P(x) is bounded for all x ε Rn
+

Boundedness implies that finite inputs only yield finite outputs.

4.5.7. P.5 T is a closed set. P: Rn
+ → 2Rm

+ is a closed correspondence, i.e., if [x` → x0,
y` → y0 and y` ε P(x`), ∀ `] then y0 ε P(x0)

The implication is that the production set T = (x, y) is closed. This means that
sequences in T(x,y) that converge do so within T(x,y). It also means that every
point outside T(x,y) has a neighborhood disjoint from T(x,y). P.5 also means that
P(x) is a closed set. P.4 and P.5 together imply that P(x) is compact for all x ∈ Rn

+.
This implies that the set P(x) contains its boundary.

Figures 8 and 9 demonstrate the difference between P(x) being a closed and an
open set. In figure 8 the boundary of P(x) is part of P(x) while in figure 9, P(x) does
not contain its boundary.
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FIGURE 6. Strong Disposability Eliminates Positively Sloped Sec-
tions of the Boundary of P(x)
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FIGURE 7. Strong Disposability
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4.5.8. P.6 Attainability. If y ε P(x), y ≥ 0 and x ≥ 0, then ∀ θ ≥ 0, ∃ λθ ≥ 0 such that
θy ε P(λθx)

This implies that in an unconstrained environment, if a given output vector is
attainable, then any scalar multiplication of it is obtainable by proportional scaling
of inputs.

4.5.9. P.7 P(x) is convex. P(x) is a convex set for all x ε Rn
+. The output sets are

convex if

∀x ∈ <n
+, ∀ y1 and y2 ∈ P (x) and 0 ≤ θ ≤ 1, θy1 + (1 − θ)y2 ∈ P (x)

This implies that if a set of inputs x will produce the output vector y1 and also
produce y2, then that same level of x will produce a linear combination of y1 and
y2. We can see this in figure
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FIGURE 8. P(x) is a Closed Set
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FIGURE 9. P(x) is an Open Set
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4.5.10. P.8 P is quasi-concave. The correspondence P is quasi-concave on Rn
+ which

means ∀ x, x’ ε Rn
+ , 0 ≤ θ ≤ 1, P(x) ∩ P(x’) ⊆ P(θx + (1-θ)x’) P.8 implies that the set

P(x) is a convex set. The set P(x) in figure 11 in not convex.

4.5.11. P.9 Convexity of T. P is concave on Rn
+ which means ∀ x, x’ ε Rn

+ , 0 ≤ θ ≤ 1,
θP(x)+(1-θ)P(x’) ⊆ P(θx + (1-θ)x’)

P.9 implies that the set T(x,y) is a convex set. The technology in figure 12 is not
convex.

4.6. The efficient subset of P(x). The efficient output subset of P(x) is defined as
follows:

EffP (x) = y : y ∈ P (x), y′ ≥ y and y 6= y′ ⇒ y′ 6∈ P (x)
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FIGURE 10. The Producible Output Set is Convex

FIGURE 11. P(x) is not Convex
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An efficient element of P(x) is an output level that cannot be exceeded with
the set of inputs x. In essence, the efficient set is elements of P(x) such that any
expansion in any element in the output y will remove it from P(x). The boundary
in figure 13 is the efficient subset of P(x).

If there is only one output, then Eff P(x) = max P(x)
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FIGURE 12. T(x) is not Convex
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FIGURE 13. Efficient Subset of P(x) is not Convex
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4.7. Optimal use of inputs. A firm uses engineering, agronomic, accounting, eco-
nomic and other principles in order to insure that it is on the boundary of the
output set. The optimal organization of inputs is sometimes called “technical effi-
ciency.”

5. THE INPUT CORRESPONDENCE AND INPUT (REQUIREMENT) SETS

5.1. Definitions. Rather than representing a firm’s technology with the technol-
ogy set T or the production set P(x), it is often convenient to define an input corre-
spondence and the associated input requirement set.

1: The input correspondence maps outputs y ε Rm
+ into subsets of inputs,

V: Rm
+ → 2Rn

+ . A correspondence is different from a function in that a
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given domain is mapped into a set as compared to a single real variable
(or number) as in a function.

2: The input requirement set V(y) of a given technology is the set of all com-
binations of the various inputs x ε Rn

+ that will produce at least the level of
output y ε Rm

+ . V(y) is then the set of all input vectors x ε Rn
+ that will pro-

duce the output vector y ε Rm
+ . We often write V(y) for both the set based

on a particular value of y, and the rule (correspondence) that assigns a set
to each vector y.

Varian [9, p. 2-10] provides a nice discussion of input requirement sets and their
relation to various functional representations of technology.

5.2. Relationship between V(y) and T(x,y).

V (y) = (x : (x, y) ε T )

In the case of a single output and two inputs V(y) is the set of all input levels
that will produce at least the output level y. This can be seen graphically in figure
14

FIGURE 14. V(y)

The set of all points above the curve represents those combinations of x1 and x2

that will produce at least the level of output y. As an example with more inputs,
consider the various combinations of corn, corn silage, soybean meal, milo, hay,
molasses, and a mineral supplement that can be used to produce 5 tons of cattle
feed with specific protein and net energy content.
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5.3. The efficient subsets of V(y). While the input correspondence maps a given
output vector into the set of all input vectors capable of producing it, economic
efficiency is concerned with minimizing the use of inputs necessary to produce a
given output level. Different ways of defining this minimal set of inputs gives rise
to different notions of efficiency.

5.3.1. The efficient subset of V(y). The efficient subset of V(y) is defined as follows:

Eff V (y) = {x : xεV (y), x′ ≤ x ⇒ x′ 6∈ V (y), Eff V (0) = {0} }
An efficient element of V(y) is an input level that cannot be reduced in any

component and still produce the set of outputs y. In essence, the efficient set is
elements of V(y) such that any reduction in any element in x removes the vector
from V(y). Production is efficient only along this lower boundary of V(y), or alter-
natively Eff V(y) is the lower boundary of V(y). The efficient set is that portion of
the boundary of V(y) that is negatively sloped as shown in figure 15.

FIGURE 15. Efficient Subset of V(y)

5.3.2. The weak efficient subset of V(y). The weak efficient subset of V(y) is defined
as follows:

WEff V (y) = {x : xεV (y), x′ <∗ x ⇒ x′ 6∈ V (y), WEff V (0) = {0} }

In essence, the weak efficient set is elements of V(y) such that any reduction in
some elements in x will remove the vector from V(y). But in this set, the levels of
some components of x may be reduced without making the vector x’ 6∈ V(y).
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5.3.3. The input isoquant of V(y). An isoquant is in some sense the effective bound-
ary of the input requirement set. Positively sloped sections and those with infinite
slope are allowed, but radial contractions of x in this set must make the resulting
x’ 6∈ V(y), It is defined as follows:

IsoqV (y) = {x : xεV (y), λx 6∈ V (y), λε[0, 1), IsoqV (0) = {0} }
An isoquant is elements of V(y) such that any radial contraction removes them

from V(y). This is made more precise by considering figure 16.

FIGURE 16. Efficient Subsets of V(y)
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The isoquant is given by abcd. A radial contraction from d’ is still in V(y), while
a radial contraction from c’ is outside of V(y). The weak efficient subset is given
by abc. In this portion of the V(y), a reduction in x2 will remove a point from V(y)
but a reduction in x1 above the point b will not. The strong efficient subset is given
by ab. A reduction in either input will remove a point from the set.

5.3.4. Relationships among various notions of efficiency. The following relationships
hold between the various efficiency concepts.

Eff V (y) ⊆ WEff V (y) ⊆ Isoq V (y)

5.4. Properties of V(y). The following are a set of axioms proposed for the input
correspondence.

5.4.1. V.1 No Free Lunch.
a: V(0) = Rn

+

b: 0 6∈ V(y), y > 0.

5.4.2. V.2 Weak Input Disposability. ∀ y ε Rm
+ , x ε V (y) and λ ≥ 1 ⇒ λx ε V (y)

5.4.3. V.2.S Strong Input Disposability. ∀ y εRm
+ x ε V (y) and x′ ≥ x ⇒ x′ ε V (y)
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5.4.4. V.3 Weak Output Disposability. ∀ y ε Rm
+ V (y) ⊆ V (θy), 0 ≤ θ ≤ 1.

5.4.5. V.3.S Strong Output Disposability. ∀ y, y′ εRm
+ , y′ ≥ y ⇒ V (y′) ⊆ V (y)

5.4.6. V.4 Boundedness for vector y. If ‖y`‖ → +∞ as l → +∞,

∩+∞
`=1 V (y`) = ∅

If y is a scalar,
⋂

yε(0,+∞)

V (y) = ∅

5.4.7. V.5 T(x) is a closed set. V: Rm
+ → 2R

+n is a closed correspondence.

5.4.8. V.6 Attainability. If x ε V(y), y ≥ 0 and x ≥ 0, the ray {λx: λ ≥ 0} intersects
all V(θy), θ ≥ 0.

5.4.9. V.7 Quasi-concavity. V is quasi-concave on Rm
+ which means ∀ y, y’ ε Rm

+ , 0
≤ θ ≤ 1, V(y) ∩ V(y’) ⊆ V(θy + (1-θ)y’).

5.4.10. V.8 Convexity of V(y). V(y) is a convex set for all y ε Rm
+

5.4.11. V.9 Convexity of T(x). V is convex on Rm
+ which means ∀ y, y’ ε Rm

+ , 0 ≤ θ
≤ 1, θV(y)+(1-θ)V(y’) ⊆ V(θy+ (1-θ)y’)

5.5. Discussion of properties of V(y).

5.5.1. V.1 Near Inaction and No Free Lunch.
a: V(0) = Rn

+

b: 0 6∈ V(y), y > 0.
The first part says that any nonnegative input is sufficient to produce at least

zero output. The second part says that if any element of y is positive, that at least
some input in needed for production. This part of the axiom is often called ”no
free lunch”.

5.5.2. V.2 Weak Input Disposability.

∀ y ε Rm
+ , x ε V (y) and λ ≥ 1 ⇒ λx ε V (y)

Weak disposability of inputs says that if inputs are proportionally increased,
outputs do not decrease.

5.5.3. V.2.S Strong Input Disposability.

∀ y εRm
+ x ε V (y) and x′ ≥ x ⇒ x′ ε V (y)

Strong disposability says that if any element of x is increased, outputs will not
decrease. Strong disposability implies weak disposability. Weak disposability
allows for backward bending isoquants while strong disposability requires iso-
quants that are parallel to the axes or have negative slope. Strong disposability
prevents uneconomic regions and any type of input congestion. COnsider the re-
lationship between disposability and efficiency in figure 16 A strongly disposable
input set has only negatively sloped sections
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5.5.4. V.3 Weak Output Disposability.

∀ y ε Rm
+ V (y) ⊆ V (θy), 0 ≤ θ ≤ 1.

Weak output disposability says that proportional reductions in output are pos-
sible for a given set of inputs, x.

5.5.5. V.3.S Strong Output Disposability.

∀ y, y′ εRm
+ , y′ ≥ y ⇒ V (y′) ⊆ V (y)

Strong output disposability states that any output can be disposed of without
affecting the inputs. This may not be reasonable if some of the outputs are viewed
as bads and must be disposed of by the producer.

5.5.6. V.4 Boundedness for vector y. If ‖y`‖ → +∞ as ` → +∞,

∩+∞
`=1 V (y`) = ∅

If y is a scalar,

⋂

yε(0,+∞)

V (y) = ∅

This axiom ensures that the technology is bounded. It is a precise way to saying
that an unbounded output rate cannot arise from a bounded input vector. In the
scalar case it is obvious an output cannot suddenly become unbounded as pro-
duced by a sequence of bounded input vectors. In the case of multiple outputs,
we use the norm of the vectors to represent the idea that it is getting larger. The
fact that the intersection of the input sets is ∅ means that the input set (and thus
the intersections) becomes smaller and smaller as y is increased and in the limit
vanishes.

5.5.7. V.5 T(x) is a closed set. V: Rm
+ → 2R

+n is a closed correspondence.

This axiom is equivalent to saying that the production possibility set or the
graph of the technology is a closed set. It further implies that V(y) is a closed set.
This property is used to define the isoquant and the efficient input set as subsets
of the boundary of V(y). V.4 and V.5 together imply that V(y) is compact.

5.5.8. V.6 Attainability. If x ε V(y), y ≥ 0 and x ≥ 0, the ray {λx: λ ≥ 0} intersects
all V(θy), θ ≥ 0.

This axiom is often referred to as the attainability axiom. It states that if a given
output vector is attainable, any scalar multiple of it is attainable by proportional
scaling of inputs. This, of course, assumes no constraints on input use.

5.5.9. V.7 Quasi-concavity. V is quasi-concave on Rm
+ which means ∀ y, y’ ε Rm

+ , 0
≤ θ ≤ 1, V(y) ∩ V(y’) ⊆ V(θy + (1-θ)y’)

This axiom implies that the output set P(x) is a convex set. Specifically it says
that if x will produce both y and y’, i.e. y ∈ P(x) and y’ ∈ P(x), then θy + (1-θ)y’ ∈
P(x). Similarly P.7 implies that V is quasiconcave so that V.7 ⇐⇒ P.7.
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5.5.10. V.8 Convexity of V(y). V(y) is a convex set for all y ε Rm
+

If V(y) is a convex set, then convex combinations of elements in V(y) are also
in V(y), i.e. if x ∈ V(y) and x’ ∈ V(y) then θx + (1-θ)x’ ∈ V(y) for θ ∈ [0,1]. This
implies that P is quasiconcave on Ren

+ , which is property P.8 about quasiconcavity
of P. And P.8 implies that V.8 so V.8 ⇐⇒ P.8. The input requirement set in figure 17
is not convex.

FIGURE 17. V(y) is not Convex

y1

y2

VHyL

5.5.11. V.9 Convexity of T(x). V is convex on Rm
+ which means ∀ y, y’ ε Rm

+ , 0 ≤ θ
≤ 1, θV(y)+(1-θ)V(y’) ⊆ V(θy+ (1-θ)y’)

This simply states that V is a convex function and that the graph or technol-
ogy set will be a convex set. Together with V.1 this eliminates increasing returns
to scale. This axiom implies both V.7 and V.8 but not vice versa because convex
functions have convex level sets but not necessarily vice versa.

6. RELATIONSHIPS BETWEEN VARIOUS REPRESENTATIONS OF TECHNOLOGY

6.1. Relationships between representations: V(y), P(x) and T(x,y). The technol-
ogy set can be written in terms of either the input or output correspondence.

T = {(x, y) : x ε Rn
+, y ε Rm

+ , such that x will produce y} (1a)

T = {(x, y) ε Rn+m
+ : y εP (x), xε Rn

+} (1b)

T = {(x, y) ε Rn+m
+ : x εV (y), yε Rm

+ } (1c)

The output and input correspondences can be determined from the technology
set

P (x) = {y : (x, y) ε T} (2a)

V (y) = {x : (x, y) ε T} (2b)
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We can summarize the relationships between the input correspondence, the
output correspondence, and the production possibilities set in the following propo-
sition.

Proposition 1. y ε P(x) ⇔ x ε V(y) ⇔ (x,y) ε T

The three representations present alternative aspects of the technology.
1: The input correspondence (V) emphasizes the substitution of inputs.
2: The output correspondence (P) emphasizes the substitution of outputs.
3: The technology set (T) emphasizes input-output transformations.

6.2. Relationships between axioms for V(y), P(x) and T(x,y). The set of axioms
V.1 - V.9 on V can be shown to be equivalent to the set of properties P.1 - P.9 on
P. For a complete set of proofs see Fare [4, p. 9-10] and Shephard [8, p. 178-192].
The key element in the proofs is the use of proposition 1 from section 6.1. For
convenience it is repeated here.

yεP (x) ⇔ xεV (y) ⇔ (x, y)εT (3)

6.2.1. Proof that P.2 implies V.2. Let y∈ P(x)⊆P(λx) for λ≥1, then by Proposition 1,
λx∈P(x) for λ≥1.

6.2.2. Proof that P.4 implies V.4. Suppose ∃ x such that x ε ∩∞
`=1 y` as ` → ∞, then

by Proposition 1, y` ε P(x) ∀ `, contradicting P.4.

6.2.3. Proof that P.8 implies V.8. Suppose that P.8 holds and that y ε Rm
+ . If y 6∈

P(x) ∩ P(x’) for any x and x’ in Rn
+ , then V(y) is empty and convex by definition.

So assume that y ε P(x) ∩ P(x’) for some x and x’. By Proposition 1, x, x’ ε V(y).
Furthermore by P.8 and Proposition 1, y ε P(θx + (1-θ)x’) and (θx + (1-θ)x’) ε V(y)
which proves convexity. For a reverse proof see Shephard [8, p. 182,191].

6.2.4. Proof that P.9 and V.9 imply that T(x,y) is convex. We need to show that a con-
vex combination of two points in the graph is also in the graph. Consider two
elements of the graph (x,y) ε T and (x’,y’) ε T. By Proposition 1, x ε V(y) and x’ ε
V(y’). Thus V.9 and the proposition imply that λx + (1-λ)x’ ε V(λy + (1-λ)y’). Now
apply the proposition again to obtain that (λx + (1-λx’, λy + (1-λ)y’) ε T.
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